St. Paul’s Cathedral Dome

Animated Construction Sequence

.

.

St. Paul’s Cathedral features an innovative triple dome structure. On the circular drum, the inner dome rises and is visible from the cathedral interior. Above this inner dome, a brick cone rises to support the 850 ton lantern. This brick cone also supports the wood rafters and frame of the outer dome, which is covered in wood and lead.

This three dome system allows the cathedral to support such a heavy lantern, all the while maintaining the great height needed to be a visible London landmark.

.

Created in Sketchup and animated in Final Cut Pro
Developed with input from James Campbell at Cambridge University
Music from the organ (William Tell’s Overture) and bells of St Paul’s (recorded 2013)

.

Virtual Reality Model

Click to Play

.

.

This scale model is created from measured plans of the structure, and is accurate to the foot. The dome of St. Paul’s consists of four interlinked structures:

.

  • The Inner Dome – visible from the cathedral interior and purely for show; height = 225 ft (69 m)
  • The Middle Dome – a brick cone that is invisible from below but supports the 850 ton lantern above; height = 278 ft (85 m)
  • The Outer Dome – a wood and lead-roofed structure visible from the cathedral exterior; height = 278 ft (85 m)
  • The Lantern – an 850 ton stone lantern and cross, whose weight rests on the Middle Dome = 365ft (111 m)

The Inner and Outer Domes are decorative, while the Middle Dome is the true weight-bearing support system.

.

 

.

.

Jeremy Bentham’s Panopticon: A Computer Model

.

To say all in one word, it [the panopticon] will be found applicable, I think,
without exception, to all establishments whatsoever, in which, within a space not too large to be covered or commanded by buildings, a number of persons are meant to be kept under inspection.

– Jeremy Bentham

.

Since the 1790s, Jeremy Bentham’s panopticon remains an influential building and representation of power relations. Yet no structure was ever built to the exact dimensions Bentham indicates in his panopticon letters. Seeking to translate Bentham into the digital age, I followed his directions and descriptions to construct an exact model in virtual reality. What would this building have looked like if it were built? Would it have been as all-seeing and all-powerful as Bentham claims?

Below is my animation. Click here to view the panopticon in virtual reality. Click here to download and edit this model (requires software). This model is open source and free to download.

.

.

c.1791 plans of panopticon, drawn by architect Willey Reveley for Jeremy Bentham

.

The panopticon in theory vs. the panopticon in (virtual) reality

Central to Bentham’s proposed building is a hierarchy of: (1) the principal guard and his family; (2) the assisting superintendents; and (3) the hundreds of inmates. The hierarchy between them literally maps onto the building’s design. The panopticon, quite literally, becomes a spatial and visual representation of the prison’s power relations.

.

.

To his credit, Bentham recognizes that an inspector on the ground floor cannot possibly see all inmates on the upper floors. The angle of view was too steep and obstructed by stairs and walkways. To this end, Bentham proposes that a covered inspection gallery be erected for every two floors of cells.

By proposing these three inspection galleries, Bentham addresses the problem of inspecting all inmates. However, he creates a new problem: From no central point would it now be possible to see all activity, as the floor plans below show. The panoramic view below shows the superintendent’s actual field of view, from which he could see into no more than four complete cells at a time. The view from the center is not, in fact, all-seeing. Guards would have to walk a continuous circuit round-and-round, as if on a treadmill.

.

.

.

The intervening stairwells and inspection corridors between the perimeter cells and the central tower might allow inspectors to see into the cells. Yet these same architectural features would also have impeded the inmates’ view toward the central rotunda. Bentham claims this rotunda could become a chapel, and that inmates could hear the sermon and view the religious ceremonies without ever needing to leave their cells. The blinds, normally closed, could be opened up for viewing the chapel.

.

.

Bentham’s suggestion is problematic. The two cross sections above show that, although some of the inmates could see the chapel from their cells, most would be unable to do so.

In spite of all these obvious faults in panopticon design, Bentham still claims that all inmates and activities are immediately visible and controlled from a single central point. When the superintendent or visitor arrives, no sooner is he announced that “the whole scene opens instantaneously to his view,” Bentham writes.

.

.

Despite Bentham’s claims to have invented a perfect and all-powerful building, the real panopticon would have been deeply flawed were it built. Although the circular form with central tower was chosen to facilitate easier surveillance, the realities and details of this design illustrate how constant surveillance was not possible. It is, therefore, no surprise that the English parliament and public rejected Bentham’s twenty year effort to build a real panopticon.

However flawed the architecture, Bentham remained ahead of his time. He envisioned an idealistic and rational, even utopian, surveillance society. Without the necessary (digital) technology to create this society, Bentham fell back on architecture to make this society possible. The failure of this architecture and its obvious shortcomings do not invalidate Bentham’s utopian project. Instead, these flaws with architecture indicate how Bentham envisioned an institution and society that would only become possible through new technologies invented hundreds of years later.

.

Related Projects

View panopticon model in virtual reality
Explore the related panopticon prison of Eastern State Penitentiary

.

Credits:

Supervised by Max Sternberg
Audio narration by Tamsin Morton
Audio credits from Freesound
panopticon interior ambiance
panopticon exterior ambiance
prison door closing
low-pitched bell sound
high-pitched bell sound
The archives and publications of UCL special collections

The Kaaba in Mecca

The Kabba (Arabic: ٱلْـكَـعْـبَـة “The Cube”) is a building at the center of Islam’s most important mosque: the Al-Masjid Al-Ḥarām in Mecca, Saudi Arabia. This is the most sacred site in Islam. Muslims consider it the “House of God,” and it has a similar role to the Tabernacle and Holy of Holies in Judaism. Wherever they are in the world, Muslims are expected to face the Kaaba when performing prayer.

One of the Five Pillars of Islam requires every Muslim to perform the Hajj. Parts of the Hajj require pilgrims to make Tawaf circumambulation seven times around the Kaaba in a counter-clockwise direction. Pilgrims also perform Tawaf during the ‘Umrah (or Lesser Pilgrimage). However, the most significant times are during the Hajj, when millions of pilgrims gather to circle the building within a five-day period.

.

.

View or download this model from Sketchfab.

Two years ago, I was unhappy with the available quality of 3D digital models of this important building for Muslim culture. I could find no models that were detailed enough or accurate enough to reality. So, I created this accurate-to-the-inch model based on architects’ drawings and photos, with guidance from my professor of Islamic art and architecture at Oxford University. The background audio is the call to prayer, as recorded in Istanbul, Turkey.

Computer Models of World Heritage

Beginning in 2016, I became involved in building interactive computer models of world architecture and heritage. Through computer modelling, there is the possibility to broaden the audience of a work of architecture beyond the small number that may actually visit the building in person. World heritage sites or buildings of cultural importance are of particular aesthetic and research value as computer models can reveal qualities of their construction and design that are otherwise invisible to the naked eye. A few of these models I created are featured below:

.

 

.

Amiens Cathedral in France and the Kaaba in Mecca (Saudi Arabia) are two of the most cogent examples of the technical possibilities of computer models. By building a model that is accurate to the measured foot, one can then view the building from beneath, above, or from unique angles that are otherwise impossible for the public to view in person. The view of the Kaaba from directly above is one such view that is possible to simulate through computer models, but is impossible to view from in person. This is due to religious and legal sanctions against flying above the Kaaba. The view of Amiens Cathedral from directly below is another example. The computer model strips away the layers of earth beneath the foundation, thereby suspending the cathedral in mid-air and permitting an imaginary view which, while theoretically existing, is humanly impossible to view.

These same models also allow us to strip away unnecessary or obstructive additions to better appreciate specific aesthetic qualities of the building. Such details include people, street furniture, and neighboring buildings that block certain angles of view. The Dome of the Rock and the Al-Aqsa Mosque of Jerusalem (which are surrounded by trees and ancient Roman-era walls on all sides) or Amiens Cathedral (surrounded by the medieval and mostly modern urban fabric of the city) are two examples of this phenomenon. Similarly, models permit us to restore structure to their original appearance as originally intended to be viewed by patron and mason, such as this model of the restored Parthenon.

Overall, the possibilities and applications for modelling are growing, and the state of the field today is by no means static. Future developments in computing, internet speeds, virtual reality, and photogrammetry will certainly permit further advancements in this field of technical and academic research.

.

.

A Few Theoretical Views of Architecture

.

The Kaaba from Above

.

Al-Aqsa Mosque from Beneath

.

Amiens Cathedral from Below

.

Hypothetical Cross-Section of Amiens Cathedral, based on a drawing by Eugène Viollet-le-Duc.

.

 

.

Eiffel Tower – Animated Construction Sequence

This animation illustrates the Eiffel Tower’s construction from August 1887 to May 1889. Music from Festival of the Animals by French composer Camille Saint-Saëns accompanies the animation for dramatic effect.

.

.

The Eiffel Tower was built over 18 months – from August 1887 to March 1889. This film shows the construction sequence, starting with the foundations and ending with the cupola. Model editing and animation in Sketchup; post-production and effects in iMovie.

.

Sources:
– Model source file: free download from 3D Warehouse
– Virtual reality computer model: view on Sketchfab
– I consulted this 2002 reprint of the Eiffel Tower structural plans to make the model.

.

.

.

.

.

Burford Church – Two Minute History

This project is also featured on Burford Church’s official website.

.

.

Beautiful Burford Church in Summer

.

.

Construction Sequence

At the conclusion of my year as an art history student at Oxford University, I chose to base my final research project on Burford Church in Oxfordshire County, England. This is a Grade I listed structure by English Heritage, roughly constructed between 1175 and 1475, with continued modifications in the Victorian era. With the generous supervision of my art history tutor, Cathy Oakes, I visited this humble parish church and constructed a computer model that documents the structure’s gradual construction and expansion over nearly 300 years work. I converted the finished model into a short, two-minute film, featured below. The original source files for this project can also be freely downloaded here from the “3D Warehouse,” a database of architectural models for the use of designers, historians, and researchers. The subtitles of this sequence are transcribed here:

.

Around 1175, work begins on the Norman church – a simple structure with choir, nave, and tower between. Here we see the structure being erected from east to west. Notice the round Norman windows.

By 1200, a small side chapel is added to the south of the tower. An aisle and entrance foyer on the south are also added. These changes require demolishing part of the existing structure.

By 1250, the side chapel is demolished and replaced by a north transept, south transept and expanded chancel.

By 1400, a crypt is added and the tower extended up. At this point, the architectural style changes from Norman to Gothic – from round arches to pointed.

The local cloth merchants also construct a guild chapel – detached from the main church and built at a slight angle.

By 1475, the guild chapel is partially demolished. On its foundations the Lady Chapel is built.

Meanwhile, most of the remaining nave is demolished to construct two aisles on either side of the nave, a larger west window, and new clerestory-level windows.

Two chapels are added on either side of the choir as well as a 3-story entrance tower. Neither of these additions are visible from this angle.

This completes the construction sequence of Burford Church.

We are now circling around the church – working our way clockwise.

.

.

.

.

.

.

.

Visual Analysis

The film below is a brief visual analysis of the church’s architectural fabric. Through my analysis, I seek to understand the following: What is the visual language of Burford Church? What aspects of medieval social and cultural history can be deduced from the church’s decoration? In the absence of a written historical record, how can we detect the sequence in which the church was erected on the basis of architectural fragments alone?

 

 

 

 

Image Gallery

.

.

.

.

.

The Digital Cathedral of Amiens

.

.

.

Cross Section of Choir

Cross Section from the Southeast Side of Cathedral

.

.

.

Research Abstract

.

amiensAs the apotheosis of Gothic architecture built during the 13th century, Amiens Cathedral is a dynamic and living structure. As the ninth largest Gothic cathedral in the world and one built in relatively short span of time, Amiens Cathedral exhibits remarkable stylistic unity throughout. Alongside the Parthenon, Amiens is taught each semester to several hundred students in Art Humanities. This has been a course required since 1947 of all undergraduate students in Columbia University’s Core Curriculum. This cathedral and the animations I created are currently used in classroom instruction of 1,300 students per year.

My objective is to recreate Amiens Cathedral as it appeared in the 15th century. My method is to build an accurate computer model of the entire cathedral, accurate to the inch, photo-realistic, and fully interactive. My hope is to find new and creative ways to engage students and visitors with this work of architecture.

The final video sequence is in two parts. One, a three minute construction sequence of the cathedral’s erection between 1220 and 15th century, which has been viewed over 30,000 times on YouTube. Two, an eight minute fly-through of the finished work of art. Viewers approach the cathedral through the narrow medieval city streets and circumnavigate the exterior from bird’s eye and ground level. Viewers then enter the cathedral and are guided through the complex interior spaces. This trilogy is complemented by historically appropriate music from 13th century French composer, Pérotin and 15th century composer Josquin des Prés, who is incidentally also featured on the Music Humanities component of Columbia’s Core Curriculum.

Amiens has undergone significant revisions and the destruction of almost all its original stained glass windows and large parts of its nave. Through digital modeling, it is possible to restore the structure to its idealized appearance as its initial architect intended. Through video, we can recreate and expand the intended audience of this building, recreating digitally the experience of pilgrimage.

A building is dynamically experienced as a sequence of sights and rooms. A research text about such a building, however, can only capture a limited amount of a structure. Photography, computer simulations, and film are, by comparison, dynamic and sometimes stronger mediums to communicate the visual and engineering complexity of a building. This project seeks to capture that dynamism through a visual, auditory, and user interactive product.

Students can download this model and freely edit, revise, and explore from their personal computer. Over 3,000 students and scholars have downloaded and 3d printed this model, which was used by students at Reading University (UK) to study acoustic archaeology and various student around the world in architecture studio classes. This model of Amiens Cathedral is built with free computer modeling software called Sketchup. Sketchup has a wide range of drawing applications, architecture, interior design, and civil engineering. Among computer modeling softwares, Sketchup is comparatively easy to use. With just a few commands, such as draw, pull, animate, and toggle, students and teachers unfamiliar with the program can build their own models in minutes.

Watch the two films below, followed by links to explore this model in virtual reality. I am further expanding upon this work for my senior thesis and by building computer models for Columbia’s Media Center for Art History. I have also created computer simulations for the Eiffel Tower’s construction sequence and of a small parish church in Burford, England.

This project would be impossible without the invaluable and expert guidance of my faculty mentor and medievalist Stephen Murray, who taught me in the Fall 2016 Bridge Seminar Life of a Cathedral. This project is also featured here on Columbia University’s website. My video lecture about how I created these animation is published here. This model is based on measured architectural plans from Stephen Murray in 1990 (link) and Georges Durand in 1901-03 (link).

 

.

.

.

.

.

.

Part One

Amiens Cathedral: A Guided tour

.

.

A guided tour of Amiens with music composed by Perotin: Viderunt Omnes, most likely composed in 1198, twenty-two years before construction started on Amiens. Viewers approach the cathedral from the west, as pilgrims would have in the Middle Ages. Viewers then circle above and through the complex system of flying buttresses that support the cathedral. The animation finishes by visualizing the cathedral from below the foundations in an abstract fashion. Starting from the concrete ground-level view of the pilgrim, the animation becomes increasingly abstract.

.

.

.

.

.

.

Part Two

Amiens Cathedral: Construction Sequence

.

.

The construction sequence of Amiens Cathedral with music by Pérotin: Beata Viscera written circa 1200. A text from Stephen Murray is transcribed below:

.

1220-c1225
Master Robert de Luzarches began work on the foundations
and lower wall. He may have been assisted by Thomas de Cormont

1225-30
Master Robert de Luzarches and Thomas de Cormont constructed the south nave aisle
rapidly to provide space for liturgical celebrations

1230-1235
Master Robert de Luzarches and Thomas de Cormont built the north nave aisle
soon afterwards

1240s-c1250
Master Thomas de Cormont constructed the upper nave
and belfries of western towers

c1250
Master Thomas de Cormont died having completed the upper nave,
begun the upper transept and laid out the lower choir

1250s-1260s
Master Renaud de Cormont completed the upper transept and upper choir. The axial
window of the choir clerestory was installed in 1269

1280s-c1310
Main roof installed from east to west

1360s-c1400
Construction of west towers

1528
Old steeple destroyed by lightning; construction of the grand clocher doré
completed c1533

 

.

.

.

.

.

.

Part Three

Amiens Cathedral: In Cross Section

.

.

The third video is the most abstract in the trilogy. Here, I juxtaposed interior and exterior views of the cathedral, exploring the relationship between interior and exterior spaces. The sequence opens and closes with an abstract cross section of the cathedral from below. Music is by Josquin des Prés: Mille Regretz.

.

.

.

.

.

.

.

.

.

Section from South Façade of Cathedral

Section from Above

.

.

.

.

.

.

.

.

.

The Cathedral from your Computer

An Interactive Animated Glossary of Amiens Cathedral

.

In addition to viewing digital cathedral in film, visitors can explore the cathedral for themselves in virtual reality.

Here is a model of a single bay of the nave of Amiens Cathedral, with labyrinth below. I imported actual images and textures into the model to create a photo-realistic effect. Click on individual numbers to see the names of the corresponding components of a medieval cathedral. Or orbit around this model to view from different angles. To learn more about this animated glossary of Amiens Cathedral, click here.

Please be patient while this model loads. Click and drag mouse to navigate around structure. Shift click to pan. Click the cube icon on the lower left hand corner of window to view in full screen. If you are on your tablet or smart phone, click the optical icon to view this model in virtual reality.

.

.

.

.

.

.

.

.

.

Interactive Model of the Exterior of Amiens Cathedral

.

.

.

.

.

.

.

Section of the Nave Roof

Section of West Façade

.

.

.

.

.

.

.

.

.

The Exterior Sequence

.

Below are a few film stills taken from the animation sequence of Amiens Cathedral’s exterior. Hover over image to display caption. Click thumbnail to view high resolution image in gallery.

South Side of Choir

The Buttresses and Rear of West Façade

Amiens Cathedral from Above

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Interior Sequence

.

Film stills of Amien’s interior. Hover over image to display caption. Click thumbnail to view full size in gallery. Gallery is organized linearly to evoke the sequence of walking through the interior spaces.

The Nave at Amiens, looking toward the choir.

Nave Aisles

Clerestory Level of Apse

Bracing and Joists Supporting the Roof

.

.

.

.

.

.

.

.

.

Dynamic Angles

.

Computer modeling allows one to explore angles of view not possible in reality. Of particular beauty are the view of Amiens from below. With the layers of earth and foundation removed, one looks up the grid of vaults and the forest of columns. The view is simultaneously a plan of the cathedral and a worm’s eye view, simultaneously of a real cathedral and an imagined world.

.

.

.

.

.

.

.

.

.

Cross Sections

.

.

Development of the Gothic Cathedral: An Evolution

.

Amiens is at an apex in the development of Gothic cathedrals. The earliest cathedrals were modeled after Roman basilicas with two narrow aisles on either side of a long, rectangular open space spanned with wood trusses. This is best exemplified in the plan of Old Saint Peter’s Basilica in Rome. Later Gothic cathedrals in following centuries modified this simple model. The dimensions and height of the cathedral grew, alongside the complexity of its vaults, columns, and ornaments. In short, the form and floor plan of the medieval cathedral evolved in response to changes in the use of the church and the rituals of the Mass.

Below are two animated videos illustrating the evolution of the Gothic cathedral: In cross section at left and in plan at right.

.

Development of a cathedral nave from Early Christian to High Gothic. A process of evolution and synthesis.

Development of the cathedral floor-plan over 1,000 years. Animation courtesy of Columbia University.

.

.

.

.

.

Many Thanks

This project would not have been possible without the generous help and expertise of Professor Stephen Murray at Columbia University’s Department of Art History & Archaeology. I am also indebted to Center for Career Education for funding this project through its Work Exemption Program. This project was inspired by a similar video trilogy from the 1990s about Amiens Cathedral: Revelations.

.

.

.