Eastern State Penitentiary Digital Reconstruction: 1829-77

Presentation

Paper delivered 6 March 2020 at the University of Cambridge: Department of Architecture.
As part of my dissertation for the MPhil degree in Architecture and Urban Studies.

.

Introduction

When visiting Eastern State Penitentiary in Philadelphia, author Alexis de Tocqueville remarked in his 1831 report to the French government on the state of American prisons:

This Penitentiary is the only edifice in this country, which is calculated to convey to our citizens the external appearance of those magnificent and picturesque castles of the middle ages, which contribute so eminently to embellish the scenery of Europe. [1]

This penitentiary was, at its 1829 opening, the most expensive and largest structure ever built in the United States. Costing $432,000, this building covered a square area 670 feet to a side with walls 30-feet-high by 12-feet-thick and 23-feet-deep at the foundations. Inside, there was: “an entire seclusion of convicts from society and from one another, as that, during the period of their confinement, no one shall see or hear, or be seen or heard by any human being, except the jailor.”[2] About 400 prisoners were equipped with running water, steam heating, individual exercise yards, and (later) gas lighting.[3] These were “luxuries” that newspapers claimed not even the city’s wealthiest citizens could afford, and in an era when the U.S. White House lacked internal plumbing. The Register of Pennsylvania described in February 1830:

The rooms are larger, viz. containing more cubic feet of air, or space, than a great number of the apartments occupied by industrious mechanics in our city; and if we consider that two or more of the latter frequently work or sleep in the same chamber, they have much less room than will be allotted to the convicts [who live one to a room and] whose cells, moreover will be more perfectly ventilated than many of the largest apartments of our opulent citizens.[4]

Given the modern standards of service, technology, and location of this prison, it seems an odd choice to employ the external appearance of a medieval castle. American society lacked the medieval heritage of “old Europe.” The external castle appearance looked to history, while the internal facilities and technology all spoke of a modern future. Robin Evans explained the frequent use of castle imagery as follows: “It was the idea of the prison, not the fact of the prison, that was to engage the architect’s imagination, and the idea of the prison was built up from historical associations.”[5]

Of the several thousand visitors, tourists, and school children who passed through this attraction and the millions more who merely saw it from a distance, the imposing castle appearance was inescapable. In 1866, 76,000 visited, a large number considering more people visited as tourists than as prisoners.[6] In this same era: “The governments of Great Britain, France, Russia, and Belgium, followed each other in quick succession in these missions; and the printed official reports was subsequently issued, accompanied as they were by illustrative drawings, spread through Europe the fame of what was then generally regarded as a remarkable example of reform.”[7] Architect John Haviland (1792-1852) – known to contemporaries as the “jailor to the world”[8] – was a neo-classical architect by training and designed few other Gothic buildings over his 40-year career.[9] He intended these medieval battlements, narrow-slit windows, and portcullis gates to “strike fear into those who passed,” an instructive lesson to those contemplating a career in crime. Unexpected still is the fact that half the $432,000 construction cost was spent on the semi-decorative perimeter wall and external ornament, features not linked to reforming felons within and, in fact, invisible to the felons.[10] Yet, according to de Tocqueville, “It is of all prisons that which requires least a high enclosing wall, because each prisoner is isolated in his cell, which he never leaves.”[11] Why were Philadelphia’s political leaders and prison reformers so concerned with keeping up appearances?

This essay will present reasons for employing medieval imagery. Through analyzing the secular, cultural, and political reasons for this choice of style, we can understand the moral and educational agenda embedded in Eastern State’s appearance.[12] By analyzing the appearance and practice of solitary confinement taken here from 1829 to 1877, we can, by extension, understand more about the hundreds of radial prisons derived from Eastern State.

.

Acknowledgements

I am indebted to my supervisor Max Sternberg, to my baby bulldog, and to my ever-loving parents for criticizing and guiding this paper.

.

[1] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[2] W. Roscoe, “Prison Discipline: Letter II,” National Gazette and Literary Register, 20 September 1827. From the Free Library of Philadelphia’s Pennsylvania Historical Newspapers Collection.
[3] Richard E. Greenwood, “Nomination form for Eastern State Penitentiary,” United States National Park Service, https://npgallery.nps.gov/AssetDetail/NRIS/66000680 (accessed 25 January 2020). This is the application submitted to protect this prison as a listed structure.
[4] Samuel Hazard, “Description of the Eastern Penitentiary of Penn’a,” The Register of Pennsylvania: devoted to the preservation of facts and documents and every other kind of useful information respecting the state of Pennsylvania 5, no. 7, 13 February 1830, 105.
[5] Robin Evans, “The Model Prison,” in The Fabrication of Virtue: English prison architecture, 1750-1840 (Cambridge University Press: 1982): 382-83.
[6] Jeffrey A. Cohen, David G. Cornelius, et al., “Construction and Alterations, 1822-65,” Eastern State Penitentiary: Historic Structures Report (Philadelphia: Eastern State Penitentiary Task Force, 1994): 88.
[7] “County Prisons,” in The Pennsylvania Journal of Prison Discipline 10, no. 2 (Philadelphia, 1855): 60.
[8] Norman B. Johnston, “John Haviland, Jailor to the World,” Journal of the Society of Architectural Historians 23, no. 2 (1964): 101-05, doi:10.2307/988164.
[9] John Haviland (author) and Hugh Bridgport (artist), The builder’s assistant containing the five orders of architecture, selected from the best specimens of the Greek and Roman (Philadelphia: John Bioren, 1818-1821).
[10] Julie Nicoletta, “The Architecture of Control: Shaker Dwelling Houses and the Reform Movement in Early-Nineteenth-Century America,” Journal of the Society of Architectural Historians 62, no. 3 (2003): 374, doi:10.2307/3592519.
[11] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[12] 1829: prison opened. 1877: prison significantly expanded and operations restructured. “Timeline,” Eastern State Penitentiary, https://www.easternstate.org/research/history-eastern-state/timeline (accessed 25 January 2020).

.

Click here to continue reading paper.

Opens in new window as PDF file.

.

Digital Reconstruction

Created in Sketchup. Based on original drawings and plans of the prison. All measurements are accurate to reality.

With ambient music from freesound.org.

.

Eastern State Penitentiary was completed in 1829 in northwest Philadelphia, Pennsylvania by architect John Haviland. It was the most expensive and largest structure yet built in America.

The design featured a central guard tower from which seven cell blocks radiated like a star. This system allowed a single guard to survey all prisoners in one sweep of the eye. A square perimeter wall surrounded the entire complex – thirty feet high and twelve feet thick. The decorative entrance resembled a medieval castle, to strike fear of prison into those passing. This castle contained the prison administration, hospital, and warden’s apartment.

As we approach the central tower, we see two kinds of cells. The first three cell blocks were one story. The last four cell blocks were two stories. Here we see the view from the guard tower, over the cell block roofs and over the exercise yards between. Each cell had running water, heating, and space for the prisoner to work. Several hundred prisoners lived in absolute solitary confinement. A vaulted and cathedral-like corridor ran down the middle of each cell block. The cells on either side were stacked one above the other. Cells on the lower floor had individual exercise yards, for use one hour per day. John Haviland was inspired by Jeremy Bentham’s panopticon. (Don’t know what the panopticon is? Click here for animation.)

Over its century in use, thousands visited and admired this design. An estimated 300 prisons around the world follow this model – making Eastern State the most influential prison ever designed.

.

360° Panoramic View from Guard Tower

.

Virtual Reality Computer Model

Shows prison as it appeared in the period 1829 to 1877 before later construction obstructed the original buildings.

.

.

.

Related

Animation of Jeremy Bentham’s panopticon
Computer model of panopticon in virtual reality
Lecture on problems with the panopticon

The Berlin Evolution Animation

.

Abstract: The Berlin Evolution Animation visualizes the development of this city’s street network and infrastructure from 1415 to the present-day, using an overlay of historic maps. The resulting short film presents a series of 17 “cartographic snapshots” of the urban area at intervals of every 30-40 years. This process highlights Berlin’s urban development over 600 years, the rapid explosion of industry and population in the 19th century, followed by the destruction and violence of two world wars and then the Cold War on Berlin’s urban fabric.

.

.

.

Animation der Wandlung Berlins

Zusammenfassung: Auf der Grundlage von historischen Karten visualisiert die „Animation der Wandelung Berlins“ die Entwicklung des Straßennetzwerks und der Infrastruktur Berlins von 1415 bis heute. In diesem kurzen Video wird eine Serie von 17 „kartographischen Momentaufnahmen“ der Stadt in einem Intervall von 30 – 40 Jahren präsentiert. Dadurch wird die Entwicklung der Stadt Berlin über 600 Jahre, das rapide Wachstum der Industrie und Bevölkerung im 19. Jahrhundert, die Zerstörung und Gewalt der zwei Weltkriege und abschließend des Kalten Krieges auf Berlins Stadtbild verdeutlicht.

.

Year, Event and Estimated Population
1415 – Medieval Berlin – 7,000
1648 – Thirty Years War – 6,000
1688 – Berlin Fortress – 19,000
1720 – Rise of Prussian Empire – 65,000
1740 – War with Austria – 90,000
1786 – Age of Enlightenment – 147,000
1806 – Napoleonic Wars – 155,000
1840 – Industrial Revolution – 329,000
1875 – German Empire – 967,000
1920 – Greater Berlin – 3,879,000
1932 – Rise of Fascism – 4,274,000
1945 – Extent of Bomb Damage – 2,807,000
1950 – Germania – World Capital
1953 – Recovery from War – 3,367,000
1961 – Berlin Wall – 3,253,000
1988 – A City Divided – 3,353,000
Contemporary – A City United
Census year
Jahr, Ereignis und geschätzte Anzahl von Bewohnern
1415 – Berlin im Mittelalter – 7,000
1648 – Der Dreißigjährige Krieg – 6.000
1688 – Die Festung Berlin – 19.000
1720 – Der Aufstieg des Königreichs Preußen – 65,000
1740 – Der Österreichische Erbfolgekrieg – 90.000
1786 – Das Zeitalter der Aufklärung – 147.000
1806 – Die Koalitionskriege – 155.000
1840 – Die industrielle Revolution – 329.000
1875 – Das Deutsche Kaiserreich – 967.000
1920 – Groß-Berlin – 3.879.000
1932 – Der Aufstieg des Faschismus – 4.274.000
1945 – Die Spuren des 2. Weltkrieges – 2.807.000
1950 – Germania – Welthauptstadt
1953 – Deutsches Wirtschaftswunder – 3.367.000
1961 – Die Berliner Mauer – 3.253.000
1988 – Eine geteilte Stadt – 3.353.000
Heute – Eine wiedervereinte Stadt
Jahr der Volkszählung

.

Methodology and Sources

I chose not to represent urban development before 1415 for three reasons: Firstly, there are too few accurate maps of the city before this time. Secondly, I needed to find accurate maps that had visual style consistent with later years, to enable easier comparison of development over time. Thirdly, the extent of urban development and population is limited (fewer than 10,000 Berliners).
There are numerous maps showing Berlin’s urban growth. But, few of them are drawn to the same scale, orientation and color palette. This makes it more difficult to observe changes to the city form over time. Fortunately, three map resources show this development with consistent style.
  1. The Historischer Atlas von Berlin (by Johann Marius Friedrich Schmidt) published 1835 represents Berlin in the selected years of: 1415, 1648, 1688, 1720, 1740, 1786. This atlas is available, free to view and download, at this link.
  2. After the year 1786, I rely on three books from cartographer Gerd Gauglitz:
    Berlin – Geschichte des Stadtgebietsin vier Karten
    Contains four beautiful maps of Berlin from 1806, 1920, 1988 and 2020. Read article.
    Berlin – Vier Stadtpläne im Vergleich
    Contains four maps from 1742, 1875, 1932 and 2017. Read article.
    Berlin – Vier Stadtpläne im VergleichErgänzungspläne
    Contains four maps from 1840,1953, 1988 and 1950. The last map from 1950 is purely speculative and shows Berlin as it would have looked had Germany won WWII and executed Albert Speer’s plans for rebuilding the city, named “Germania.” Read article.
    Gerd Gaulitz’s three map books can be purchased from Schropp Land & Karte.
  3. I also show the estimated extent of WWII bomb damage to Berlin. This map is sourced from an infographic dated 8 May 2015 in the Berliner Morgenpost. View original infographic. This infographic is, in turn, based on bombing maps produced by the British Royal Air Force during WWII (and Albert Speer’s c.1950 plan for Berlin).
Below is an interactive map I created of the Berlin Wall’s route and the four Allied occupation areas:

.

.

Population statistics in the 17 “cartographic snapshots” are estimates. The historical development of Berlin’s population is known for a few years. For other years, the population is estimated with regards to the two censuses between which the year of the “snapshot” falls.

New York City Water Supply

New York City has some of the world’s cleanest drinking water. It is one of only a few American cities (and among those cities the largest) to supply completely unfiltered drinking water to nine million people. This system collects water from over 1,000 square miles of forest and farms in Upstate New York, transports this water in up to 125 miles of buried aqueducts, and delivers one billion gallons per day, enough to fill a cube ~300 feet to a side, or the volume of the Empire State Building. This is one of America’s largest and most ambitious infrastructure projects. It remains, however, largely invisible and taken for granted. When they drink a glass of water or wash their hands, few New Yorkers remind themselves of this marvel in civil engineering they benefit from.
This animated map illustrates the visual history of this important American system.

.

Sound of water and ambient music from freesound.org

New York City is surrounded by saltwater and has few sources of natural freshwater. From the early days, settlers dug wells and used local streams. But, as the population grew, these sources became polluted. Water shortages allowed disease and fire to threaten the city’s future. In response, city leaders looked north, to the undeveloped forests and rivers of Upstate New York. This began the 200-year-long search for clean water for the growing city.

.

Credits

Gergely Baics – advice on GIS skills and animating water history
Kenneth Jackson – infrastructure history
Juan F. Martinez and Wright Kennedy – data

.

Interactive Map

I created this animation with information from New York City Open Data about the construction and location of water supply infrastructure. Aqueduct routes are traced from publicly-available satellite imagery and old maps in NYPL digital collections. Thanks is also due to Juan F. Martinez, who created this visualization.
Explore water features in the interactive map below. Click color-coded features to reveal detail.
Watersheds   Subsurface Aqueducts   Surface Aqueducts   Water Distribution Tunnels   City Limits

.

▼ For map legend, press arrow key below.

.

Sources

.
Contemporary Maps
NYC System and Shapefiles – Juan F. Martinez
Watershed Recreation Areas – NYC Department of Environment Protection (DEP)
General System Map – NY State Department of Environmental Conservation (DEC)
.
Historic Maps
.
Texts
Water Supply Fast Facts – NY State DEC
.
Animation music – Freesound
Audio narration – Myles Zhang

What’s wrong with Jeremy Bentham’s Panopticon?

Postmodernist thinkers, like Michel Foucault, interpret Jeremy Bentham’s panopticon, invented c.1790, as a symbol for surveillance and the modern surveillance state.

This lecture is in two parts. First, I present a computer model of the panopticon, built according to Bentham’s instructions. Then, I identify design problems with the panopticon and with the symbolism people often give it.

Related Projects

– Computer animation of Jeremy Bentham’s panopticon
Essay on problems with the panopticon design
View panopticon model in virtual reality
Explore the related panopticon prison of Eastern State

Computer Animation of Jeremy Bentham’s Panopticon

.

“To say all in one word, [the panopticon] will be found applicable, I think,
without exception, to all establishments whatsoever”

– Jeremy Bentham

.

Since the 1780s, hundreds of articles discuss Jeremy Bentham’s panopticon. But, no structure was ever built to the exact dimensions Bentham gives in his panopticon letters. Seeking to translate Bentham into the digital age, I followed his directions and descriptions to create an open source, virtual reality computer model of the panopticon.

Below, you can view the animation about this structure. Visit this link to view the panopticon in virtual reality. Or click here to download and edit my model (requires Sketchup).

.

 

Transcription of audio narration:

The panopticon is the form of the ideal prison, designed around 1787 by English philosopher Jeremy Bentham. Over 300 prisons around the world follow this model:

  1. A circle of diameter 100 feet
  2. Around the perimeter of this circle stretch cells
  3. Each cell is 9 feet deep
  4. And 48 per floor
  5. Each cell has a toilet, a bed, and space to work
  6. The cells rise six floors

On every other floor, there is a surveillance corridor, in which a guard may survey two floors of prisoners. The guard watches the prisoners. But the prisoners do not see the guard and do not know when they are watched. And must therefore act as if they were always watched. Three guards each see 96 prisoners, which makes 288 prisoners total.

In the center of the space, there is an auditorium, in which the prisoners may assemble to be lectured. A wall of screens may rise surrounding the chapel. And separating the prisoners from seeing into it, or from seeing each other from across the void of the empty space in middle.

Spiral staircases ascend through the space. And an iron and glass frame rises through the space and vaults over the chapel.

This completes the panopticon, the form of the ideal prison.

.

Related Projects

– Computer animation of Jeremy Bentham’s panopticon
Essay on problems with the panopticon design
View panopticon model in virtual reality
Explore the related panopticon prison of Eastern State Penitentiary

.

Credits:

Supervised by Max Sternberg
Audio narration by Tamsin Morton
Audio credits from Freesound
panopticon interior ambiance
panopticon exterior ambiance
prison door closing
low-pitched bell sound
high-pitched bell sound
The archives and publications of the UCL special collections

Link Newark Project

In fall 2019, the company that manages free wifi hotspots and advertising screens in downtown Newark invited me to display some of my artwork on their screens. I selected to exhibit drawings from my Vanishing Newark project. Images of this work on digital display are featured below:

.

 

New York City in One Drawing

Click here to view image in more detail.

This drawing of New York City represents about 1,000 hours of work over three years. The image measures approximately 44 inches high by 96 inches wide (110cm x 245cm). It is drawn entirely in permanent black ink on thick watercolor paper.
The finished panorama represents the view of NYC looking northwest from approximately half a mile above Governor’s Island and Red Hook. The Statue of Liberty, Ellis Island, and Staten Island are therefore not shown. All of the Manhattan bridges are included, as well as all the island’s major parks. Any buildings excluded were done so because they were either too small, too distant to include, or not visible from the angle this image is taken. The view is accurate as of summer 2017 and naturally does not include buildings completed after this date.

.

The image features between eight and ten thousand buildings, spread across four of the five boroughs depicted. Each building is drawn from Google Earth satellite, street view, and photogrammetry images. For the largest and most important buildings, attention is paid to represent the numbers and size of each window as accurately as can be drawn in ink. View here in 3D where on Google Earth this image is taken from.
My love for this city inspired me to create. I am planning (although have not yet done so) to frame this image on my living room wall as a way to remember this city by. Riding Prof. Kenneth Jackson’s all night bike tour through Gotham’s history equally inspired me to create (co-taught with Lisa Keller). Traced in orange on the map below is the route Prof. Jackson’s bike tour takes through the city: starting at Columbia University’s Low Library, down through Central Park, across Midtown to Washington Park, along the Hudson River to Wall Street, and then across the Brooklyn Bridge and into Brooklyn Heights where the tour ended near Plymouth Church.

Drawing with route of Kenneth Jackson’s bike tour traced above

Below is an annotated version of my drawing. Neighborhoods are annotated with red labels.
Click red label to view detail of corresponding area.

.

This image’s large size will not fit in a conventional scanner. I plan at a later date to properly scan and to create large-format prints from this scan. In the meantime, scroll down for more detail views:

.

New York City in a Box

.

.

This pop up model in a recycled metal box (measuring 8 inches wide by 15.5 long and 2.5 deep) reveals a miniature world of New York City architecture and landmarks when opened. About 30 buildings made from hand cut paper and tin are spread across a flat ground of painted streets. Each building is made from a single sheet of paper that is cut and folded like origami to create different shapes and sizes. A hand cranked lever operates a hidden mechanism of chains and gears hidden beneath. These gears move the magnetized trains and airplanes through the city. The video below shows this mechanism exposed.

Click here to read an article featuring this project.

.

.

  

.

Hand-crank and music box recording courtesy of Freesound.

California Waterscape

California Waterscape animates the development of this state’s water delivery infrastructure from 1913 to 2019, using geo-referenced aqueduct route data, land use maps, and statistics on reservoir capacity. The resulting film presents a series of “cartographic snapshots” of every year since the opening of the Los Angeles Aqueduct in 1913. This process visualizes the rapid growth of this state’s population, cities, agriculture, and water needs.

.

Music: Panning the Sands by Patrick O’Hearn
.

Text from animation is copied below:

.

Each blue dot is one dam, sized for the amount of water it captures. Each blue line is one canal or aqueduct. These infrastructure features become visible as they near completion.

.

The challenge: to capture and transport water to where water is needed hundreds of miles away. To grow food where there was once desert.

.

Notice the sudden growth spurt in construction during the 1930s Great Depression… And again during the 1950s through 1970s.

.

The longest aqueducts that run from mountainous areas to the cities mostly deliver drinking water. The shorter aqueducts in the Central Valley mostly bring water to farms.

.

Here we see dams in the Sierra Nevada Mountains gradually come on line. Many prevent flooding. Or they seize winter snow and rain for when this water is needed in summer.

.

Since the 1970s, construction slows down, but population continues growing.

.

In 2010, about six hundred fifty dams and four thousand five hundred miles of major aqueducts and canals store and move over 38 billion gallons per day. This is the most complex and expensive system ever built to conquer water.

.

But, how will man’s system cope with climate change?

.

.

2. Research Methodology and Sources

The most important data sources consulted and integrated into this animation are listed here with links:

– Fire Resource and Assessment Program → Land use and urban development maps
(a pdf file imported as transparent raster into QGIS)
– California Department of Water Resources → Routes of aqueducts and canals
(shapefile)
– Bureau of Transportation Statistics → Dam and reservoir data
(csv with lat-long values)
– USGS Topo Viewer → Historic aqueduct route and land use maps
– U.S. Census Bureau → Estimated California population by year

Consult the research methodology and bibliography for complete details.

.

Spotted an error or area for improvement? Please email: [email protected]
Download and edit the open source dataset behind this animation.
Click this Google Drive link and “request access” to QGIS shapefile.

3. Source Data on Dams and Reservoirs

^ Created with open data from the US Bureau of Transportation Statistics and visualized in Tableau Public. This map includes all dams in California that are “50 feet or more in height, or with a normal storage capacity of 5,000 acre-feet or more, or with a maximum storage capacity of 25,000 acre-feet or more.” Dams are geo-referenced and sized according to their storage capacity in acre-feet. One acre-foot is the amount required to cover one acre of land to a depth of one foot (equal to 325,851 gallons or 1.233 ● 10liters). This is the unit of measurement California uses to estimate water availability and use.

.

.

4. Source Data on Aqueducts and Canals

^ Created with open data from the California Department of Water Resources, with additional water features manually added in QGIS and visualized in Tableau Public. All data on routes, lengths, and years completed is an estimate. This map includes all the major water infrastructure features; it is not comprehensive of all features. This map excludes the following categories of aqueducts and canals:

.

  • Features built and managed by individual farmers and which extend for a length of only a few hundred feet. These features are too small and too numerous to map out for the entire state and to animate by their date completed. This level of information does not exist or is too difficult to locate.
  • Features built but later abandoned or demolished. This includes no longer extant aqueducts built by Spanish colonists, early American settlers, etc.
  • Features created by deepening, widening, or otherwise expanding the path of an existing and naturally flowing waterway. Many California rivers and streams were dredged and widened to become canals, and many more rivers turned “canals” remain unlined along their path. Determining the “date completed” or “date built” for these semi-natural features is therefore difficult. So, for the purposes of simplicity and to aid viewers in seeing only manmade water features in the animation, this category is generally excluded.

.

.

.

Those seeking to share this project to their website or organization are requested to contact the author before publication. We will gladly share all source files associated with this animation, provided recipients use this information for non-commercial purposes. Pre-production and data editing were conducted with QGIS and Tableau. Visualization and animation were conducted Photoshop and Final Cut Pro. For this project, we worked from a mid-2014 MacBook Air with 4GB RAM.