Eastern State Penitentiary Digital Reconstruction: 1829-77

Presentation

Paper delivered 6 March 2020 at the University of Cambridge: Department of Architecture.
As part of my dissertation for the MPhil degree in Architecture and Urban Studies.

.

Introduction

When visiting Eastern State Penitentiary in Philadelphia, author Alexis de Tocqueville remarked in his 1831 report to the French government on the state of American prisons:

This Penitentiary is the only edifice in this country, which is calculated to convey to our citizens the external appearance of those magnificent and picturesque castles of the middle ages, which contribute so eminently to embellish the scenery of Europe. [1]

This penitentiary was, at its 1829 opening, the most expensive and largest structure ever built in the United States. Costing $432,000, this building covered a square area 670 feet to a side with walls 30-feet-high by 12-feet-thick and 23-feet-deep at the foundations. Inside, there was: “an entire seclusion of convicts from society and from one another, as that, during the period of their confinement, no one shall see or hear, or be seen or heard by any human being, except the jailor.”[2] About 400 prisoners were equipped with running water, steam heating, individual exercise yards, and (later) gas lighting.[3] These were “luxuries” that newspapers claimed not even the city’s wealthiest citizens could afford, and in an era when the U.S. White House lacked internal plumbing. The Register of Pennsylvania described in February 1830:

The rooms are larger, viz. containing more cubic feet of air, or space, than a great number of the apartments occupied by industrious mechanics in our city; and if we consider that two or more of the latter frequently work or sleep in the same chamber, they have much less room than will be allotted to the convicts [who live one to a room and] whose cells, moreover will be more perfectly ventilated than many of the largest apartments of our opulent citizens.[4]

Given the modern standards of service, technology, and location of this prison, it seems an odd choice to employ the external appearance of a medieval castle. American society lacked the medieval heritage of “old Europe.” The external castle appearance looked to history, while the internal facilities and technology all spoke of a modern future. Robin Evans explained the frequent use of castle imagery as follows: “It was the idea of the prison, not the fact of the prison, that was to engage the architect’s imagination, and the idea of the prison was built up from historical associations.”[5]

Of the several thousand visitors, tourists, and school children who passed through this attraction and the millions more who merely saw it from a distance, the imposing castle appearance was inescapable. In 1866, 76,000 visited, a large number considering more people visited as tourists than as prisoners.[6] In this same era: “The governments of Great Britain, France, Russia, and Belgium, followed each other in quick succession in these missions; and the printed official reports was subsequently issued, accompanied as they were by illustrative drawings, spread through Europe the fame of what was then generally regarded as a remarkable example of reform.”[7] Architect John Haviland (1792-1852) – known to contemporaries as the “jailor to the world”[8] – was a neo-classical architect by training and designed few other Gothic buildings over his 40-year career.[9] He intended these medieval battlements, narrow-slit windows, and portcullis gates to “strike fear into those who passed,” an instructive lesson to those contemplating a career in crime. Unexpected still is the fact that half the $432,000 construction cost was spent on the semi-decorative perimeter wall and external ornament, features not linked to reforming felons within and, in fact, invisible to the felons.[10] Yet, according to de Tocqueville, “It is of all prisons that which requires least a high enclosing wall, because each prisoner is isolated in his cell, which he never leaves.”[11] Why were Philadelphia’s political leaders and prison reformers so concerned with keeping up appearances?

This essay will present reasons for employing medieval imagery. Through analyzing the secular, cultural, and political reasons for this choice of style, we can understand the moral and educational agenda embedded in Eastern State’s appearance.[12] By analyzing the appearance and practice of solitary confinement taken here from 1829 to 1877, we can, by extension, understand more about the hundreds of radial prisons derived from Eastern State.

.

Acknowledgements

I am indebted to my supervisor Max Sternberg, to my baby bulldog, and to my ever-loving parents for criticizing and guiding this paper.

.

[1] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[2] W. Roscoe, “Prison Discipline: Letter II,” National Gazette and Literary Register, 20 September 1827. From the Free Library of Philadelphia’s Pennsylvania Historical Newspapers Collection.
[3] Richard E. Greenwood, “Nomination form for Eastern State Penitentiary,” United States National Park Service, https://npgallery.nps.gov/AssetDetail/NRIS/66000680 (accessed 25 January 2020). This is the application submitted to protect this prison as a listed structure.
[4] Samuel Hazard, “Description of the Eastern Penitentiary of Penn’a,” The Register of Pennsylvania: devoted to the preservation of facts and documents and every other kind of useful information respecting the state of Pennsylvania 5, no. 7, 13 February 1830, 105.
[5] Robin Evans, “The Model Prison,” in The Fabrication of Virtue: English prison architecture, 1750-1840 (Cambridge University Press: 1982): 382-83.
[6] Jeffrey A. Cohen, David G. Cornelius, et al., “Construction and Alterations, 1822-65,” Eastern State Penitentiary: Historic Structures Report (Philadelphia: Eastern State Penitentiary Task Force, 1994): 88.
[7] “County Prisons,” in The Pennsylvania Journal of Prison Discipline 10, no. 2 (Philadelphia, 1855): 60.
[8] Norman B. Johnston, “John Haviland, Jailor to the World,” Journal of the Society of Architectural Historians 23, no. 2 (1964): 101-05, doi:10.2307/988164.
[9] John Haviland (author) and Hugh Bridgport (artist), The builder’s assistant containing the five orders of architecture, selected from the best specimens of the Greek and Roman (Philadelphia: John Bioren, 1818-1821).
[10] Julie Nicoletta, “The Architecture of Control: Shaker Dwelling Houses and the Reform Movement in Early-Nineteenth-Century America,” Journal of the Society of Architectural Historians 62, no. 3 (2003): 374, doi:10.2307/3592519.
[11] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[12] 1829: prison opened. 1877: prison significantly expanded and operations restructured. “Timeline,” Eastern State Penitentiary, https://www.easternstate.org/research/history-eastern-state/timeline (accessed 25 January 2020).

.

Click here to continue reading paper.

Opens in new window as PDF file.

.

Digital Reconstruction

Created in Sketchup. Based on original drawings and plans of the prison. All measurements are accurate to reality.

With ambient music from freesound.org.

.

Eastern State Penitentiary was completed in 1829 in northwest Philadelphia, Pennsylvania by architect John Haviland. It was the most expensive and largest structure yet built in America.

The design featured a central guard tower from which seven cell blocks radiated like a star. This system allowed a single guard to survey all prisoners in one sweep of the eye. A square perimeter wall surrounded the entire complex – thirty feet high and twelve feet thick. The decorative entrance resembled a medieval castle, to strike fear of prison into those passing. This castle contained the prison administration, hospital, and warden’s apartment.

As we approach the central tower, we see two kinds of cells. The first three cell blocks were one story. The last four cell blocks were two stories. Here we see the view from the guard tower, over the cell block roofs and over the exercise yards between. Each cell had running water, heating, and space for the prisoner to work. Several hundred prisoners lived in absolute solitary confinement. A vaulted and cathedral-like corridor ran down the middle of each cell block. The cells on either side were stacked one above the other. Cells on the lower floor had individual exercise yards, for use one hour per day. John Haviland was inspired by Jeremy Bentham’s panopticon. (Don’t know what the panopticon is? Click here for animation.)

Over its century in use, thousands visited and admired this design. An estimated 300 prisons around the world follow this model – making Eastern State the most influential prison ever designed.

.

360° Panoramic View from Guard Tower

.

Virtual Reality Computer Model

Shows prison as it appeared in the period 1829 to 1877 before later construction obstructed the original buildings.

.

.

.

Related

Animation of Jeremy Bentham’s panopticon
Computer model of panopticon in virtual reality
Lecture on problems with the panopticon

The Berlin Evolution Animation

.

Abstract: The Berlin Evolution Animation visualizes the development of this city’s street network and infrastructure from 1415 to the present-day, using an overlay of historic maps. The resulting short film presents a series of 17 “cartographic snapshots” of the urban area at intervals of every 30-40 years. This process highlights Berlin’s urban development over 600 years, the rapid explosion of industry and population in the 19th century, followed by the destruction and violence of two world wars and then the Cold War on Berlin’s urban fabric.

.

.

.

Animation der Wandlung Berlins

Zusammenfassung: Auf der Grundlage von historischen Karten visualisiert die „Animation der Wandelung Berlins“ die Entwicklung des Straßennetzwerks und der Infrastruktur Berlins von 1415 bis heute. In diesem kurzen Video wird eine Serie von 17 „kartographischen Momentaufnahmen“ der Stadt in einem Intervall von 30 – 40 Jahren präsentiert. Dadurch wird die Entwicklung der Stadt Berlin über 600 Jahre, das rapide Wachstum der Industrie und Bevölkerung im 19. Jahrhundert, die Zerstörung und Gewalt der zwei Weltkriege und abschließend des Kalten Krieges auf Berlins Stadtbild verdeutlicht.

.

Year, Event and Estimated Population
1415 – Medieval Berlin – 7,000
1648 – Thirty Years War – 6,000
1688 – Berlin Fortress – 19,000
1720 – Rise of Prussian Empire – 65,000
1740 – War with Austria – 90,000
1786 – Age of Enlightenment – 147,000
1806 – Napoleonic Wars – 155,000
1840 – Industrial Revolution – 329,000
1875 – German Empire – 967,000
1920 – Greater Berlin – 3,879,000
1932 – Rise of Fascism – 4,274,000
1945 – Extent of Bomb Damage – 2,807,000
1950 – Germania – World Capital
1953 – Recovery from War – 3,367,000
1961 – Berlin Wall – 3,253,000
1988 – A City Divided – 3,353,000
Contemporary – A City United
Census year
Jahr, Ereignis und geschätzte Anzahl von Bewohnern
1415 – Berlin im Mittelalter – 7,000
1648 – Der Dreißigjährige Krieg – 6.000
1688 – Die Festung Berlin – 19.000
1720 – Der Aufstieg des Königreichs Preußen – 65,000
1740 – Der Österreichische Erbfolgekrieg – 90.000
1786 – Das Zeitalter der Aufklärung – 147.000
1806 – Die Koalitionskriege – 155.000
1840 – Die industrielle Revolution – 329.000
1875 – Das Deutsche Kaiserreich – 967.000
1920 – Groß-Berlin – 3.879.000
1932 – Der Aufstieg des Faschismus – 4.274.000
1945 – Die Spuren des 2. Weltkrieges – 2.807.000
1950 – Germania – Welthauptstadt
1953 – Deutsches Wirtschaftswunder – 3.367.000
1961 – Die Berliner Mauer – 3.253.000
1988 – Eine geteilte Stadt – 3.353.000
Heute – Eine wiedervereinte Stadt
Jahr der Volkszählung

.

Methodology and Sources

I chose not to represent urban development before 1415 for three reasons: Firstly, there are too few accurate maps of the city before this time. Secondly, I needed to find accurate maps that had visual style consistent with later years, to enable easier comparison of development over time. Thirdly, the extent of urban development and population is limited (fewer than 10,000 Berliners).
There are numerous maps showing Berlin’s urban growth. But, few of them are drawn to the same scale, orientation and color palette. This makes it more difficult to observe changes to the city form over time. Fortunately, three map resources show this development with consistent style.
  1. The Historischer Atlas von Berlin (by Johann Marius Friedrich Schmidt) published 1835 represents Berlin in the selected years of: 1415, 1648, 1688, 1720, 1740, 1786. This atlas is available, free to view and download, at this link.
  2. After the year 1786, I rely on three books from cartographer Gerd Gauglitz:
    Berlin – Geschichte des Stadtgebietsin vier Karten
    Contains four beautiful maps of Berlin from 1806, 1920, 1988 and 2020. Read article.
    Berlin – Vier Stadtpläne im Vergleich
    Contains four maps from 1742, 1875, 1932 and 2017. Read article.
    Berlin – Vier Stadtpläne im VergleichErgänzungspläne
    Contains four maps from 1840,1953, 1988 and 1950. The last map from 1950 is purely speculative and shows Berlin as it would have looked had Germany won WWII and executed Albert Speer’s plans for rebuilding the city, named “Germania.” Read article.
    Gerd Gaulitz’s three map books can be purchased from Schropp Land & Karte.
  3. I also show the estimated extent of WWII bomb damage to Berlin. This map is sourced from an infographic dated 8 May 2015 in the Berliner Morgenpost. View original infographic. This infographic is, in turn, based on bombing maps produced by the British Royal Air Force during WWII (and Albert Speer’s c.1950 plan for Berlin).
Below is an interactive map I created of the Berlin Wall’s route and the four Allied occupation areas:

.

.

Population statistics in the 17 “cartographic snapshots” are estimates. The historical development of Berlin’s population is known for a few years. For other years, the population is estimated with regards to the two censuses between which the year of the “snapshot” falls.

New York City Water Supply Animated History

New York City has some of the world’s cleanest drinking water. It is one of only a few American cities (and among those cities the largest) to supply completely unfiltered drinking water to nine million people. This system collects water from around 2,000 square miles of forest and farms in Upstate New York, transports this water in up to 125 miles of buried aqueducts, and delivers one billion gallons per day, enough to fill a cube ~300 feet to a side, or the volume of the Empire State Building. This is one of America’s largest and most ambitious infrastructure projects. It remains, however, largely invisible and taken for granted. When they drink a glass of water or wash their hands, few New Yorkers remind themselves of this marvel in civil engineering they benefit from.
This animated map illustrates the visual history of this important American infrastructure.

.

Sound of water and ambient music from freesound.org

New York City is surrounded by saltwater and has few sources of natural freshwater. From the early days, settlers dug wells and used local streams. But, as the population grew, these sources became polluted. Water shortages allowed disease and fire to threaten the city’s future. In response, city leaders looked north, to the undeveloped forests and rivers of Upstate New York. This began the 200-year-long search for clean water for the growing city.

.

Credits

Gergely Baics – advice on GIS skills and animating water history
Kenneth T. Jackson – infrastructure history
Juan F. Martinez and Wright Kennedy – data

.

Interactive Map

I created this animation with information from New York City Open Data about the construction and location of water supply infrastructure. Aqueduct routes are traced from publicly-available satellite imagery and old maps in NYPL digital collections. Thanks is also due to Juan F. Martinez, who created this visualization.
Explore water features in the interactive map below. Click color-coded features to reveal detail.
Watersheds   Subsurface Aqueducts   Surface Aqueducts   Water Distribution Tunnels   City Limits

.

▼ For map legend, press arrow key below.

.

Sources

.
Contemporary Maps
NYC System and Shapefiles – Juan F. Martinez
Watershed Recreation Areas – NYC Department of Environment Protection (DEP)
General System Map – NY State Department of Environmental Conservation (DEC)
.
Historic Maps
.
Texts
Water Supply Fast Facts – NY State DEC
Encyclopedia of the City of New York – Kenneth T. Jackson
.
Animation music – Freesound
Audio narration – Myles Zhang

Computer Animation of Jeremy Bentham’s Panopticon

.

“To say all in one word, [the panopticon] will be found applicable, I think,
without exception, to all establishments whatsoever”

– Jeremy Bentham

.

Since the 1780s, hundreds of articles discuss Jeremy Bentham’s panopticon. But, no structure was ever built to the exact dimensions Bentham gives in his panopticon letters. Seeking to translate Bentham into the digital age, I followed his directions and descriptions to create an open source, virtual reality computer model of the panopticon.

Below, you can view the animation about this structure. Visit this link to view the panopticon in virtual reality. Or click here to download and edit my model (requires Sketchup).

.

 

Transcription of audio narration:

The panopticon is the form of the ideal prison, designed around 1787 by English philosopher Jeremy Bentham. Over 300 prisons around the world follow this model:

  1. A circle of diameter 100 feet
  2. Around the perimeter of this circle stretch cells
  3. Each cell is 9 feet deep
  4. And 48 per floor
  5. Each cell has a toilet, a bed, and space to work
  6. The cells rise six floors

On every other floor, there is a surveillance corridor, in which a guard may survey two floors of prisoners. The guard watches the prisoners. But the prisoners do not see the guard and do not know when they are watched. And must therefore act as if they were always watched. Three guards each see 96 prisoners, which makes 288 prisoners total.

In the center of the space, there is an auditorium, in which the prisoners may assemble to be lectured. A wall of screens may rise surrounding the chapel. And separating the prisoners from seeing into it, or from seeing each other from across the void of the empty space in middle.

Spiral staircases ascend through the space. And an iron and glass frame rises through the space and vaults over the chapel.

This completes the panopticon, the form of the ideal prison.

.

Related Projects

– Computer animation of Jeremy Bentham’s panopticon
Essay on problems with the panopticon design
View panopticon model in virtual reality
Explore the related panopticon prison of Eastern State Penitentiary

.

Credits:

Supervised by Max Sternberg
Audio narration by Tamsin Morton
Audio credits from Freesound
panopticon interior ambiance
panopticon exterior ambiance
prison door closing
low-pitched bell sound
high-pitched bell sound
The archives and publications of the UCL special collections

New York City in a Box

.

.

This pop up model in a recycled metal box (measuring 8 inches wide by 15.5 long and 2.5 deep) reveals a miniature world of New York City architecture and landmarks when opened. About 30 buildings made from hand cut paper and tin are spread across a flat ground of painted streets. Each building is made from a single sheet of paper that is cut and folded like origami to create different shapes and sizes. A hand cranked lever operates a hidden mechanism of chains and gears hidden beneath. These gears move the magnetized trains and airplanes through the city. The video below shows this mechanism exposed.

Click here to read an article featuring this project.

.

.

  

.

Hand-crank and music box recording courtesy of Freesound.

California Waterscape

California Waterscape animates the development of this state’s water delivery infrastructure from 1913 to 2019, using geo-referenced aqueduct route data, land use maps, and statistics on reservoir capacity. The resulting film presents a series of “cartographic snapshots” of every year since the opening of the Los Angeles Aqueduct in 1913. This process visualizes the rapid growth of this state’s population, cities, agriculture, and water needs.

.

Music: Panning the Sands by Patrick O’Hearn
.

Text from animation is copied below:

.

Each blue dot is one dam, sized for the amount of water it captures. Each blue line is one canal or aqueduct. These infrastructure features become visible as they near completion.

.

The challenge: to capture and transport water to where water is needed hundreds of miles away. To grow food where there was once desert.

.

Notice the sudden growth spurt in construction during the 1930s Great Depression… And again during the 1950s through 1970s.

.

The longest aqueducts that run from mountainous areas to the cities mostly deliver drinking water. The shorter aqueducts in the Central Valley mostly bring water to farms.

.

Here we see dams in the Sierra Nevada Mountains gradually come on line. Many prevent flooding. Or they seize winter snow and rain for when this water is needed in summer.

.

Since the 1970s, construction slows down, but population continues growing.

.

In 2010, about six hundred fifty dams and four thousand five hundred miles of major aqueducts and canals store and move over 38 billion gallons per day. This is the most complex and expensive system ever built to conquer water.

.

But, how will man’s system cope with climate change?

.

.

2. Research Methodology and Sources

The most important data sources consulted and integrated into this animation are listed here with links:

– Fire Resource and Assessment Program → Land use and urban development maps
(a pdf file imported as transparent raster into QGIS)
– California Department of Water Resources → Routes of aqueducts and canals
(shapefile)
– Bureau of Transportation Statistics → Dam and reservoir data
(csv with lat-long values)
– USGS Topo Viewer → Historic aqueduct route and land use maps
– U.S. Census Bureau → Estimated California population by year

Consult the research methodology and bibliography for complete details.

.

Spotted an error or area for improvement? Please email: [email protected]
Download and edit the open source dataset behind this animation.
Click this Google Drive link and “request access” to QGIS shapefile.

3. Source Data on Dams and Reservoirs

^ Created with open data from the US Bureau of Transportation Statistics and visualized in Tableau Public. This map includes all dams in California that are “50 feet or more in height, or with a normal storage capacity of 5,000 acre-feet or more, or with a maximum storage capacity of 25,000 acre-feet or more.” Dams are geo-referenced and sized according to their storage capacity in acre-feet. One acre-foot is the amount required to cover one acre of land to a depth of one foot (equal to 325,851 gallons or 1.233 ● 10liters). This is the unit of measurement California uses to estimate water availability and use.

.

.

4. Source Data on Aqueducts and Canals

^ Created with open data from the California Department of Water Resources, with additional water features manually added in QGIS and visualized in Tableau Public. All data on routes, lengths, and years completed is an estimate. This map includes all the major water infrastructure features; it is not comprehensive of all features. This map excludes the following categories of aqueducts and canals:

.

  • Features built and managed by individual farmers and which extend for a length of only a few hundred feet. These features are too small and too numerous to map out for the entire state and to animate by their date completed. This level of information does not exist or is too difficult to locate.
  • Features built but later abandoned or demolished. This includes no longer extant aqueducts built by Spanish colonists, early American settlers, etc.
  • Features created by deepening, widening, or otherwise expanding the path of an existing and naturally flowing waterway. Many California rivers and streams were dredged and widened to become canals, and many more rivers turned “canals” remain unlined along their path. Determining the “date completed” or “date built” for these semi-natural features is therefore difficult. So, for the purposes of simplicity and to aid viewers in seeing only manmade water features in the animation, this category is generally excluded.

.

.

.

Those seeking to share this project to their website or organization are requested to contact the author before publication. We will gladly share all source files associated with this animation, provided recipients use this information for non-commercial purposes. Pre-production and data editing were conducted with QGIS and Tableau. Visualization and animation were conducted Photoshop and Final Cut Pro. For this project, we worked from a mid-2014 MacBook Air with 4GB RAM.

Exhibition Design

.

To hear my interview about this jail and exhibit, please listen to this podcast from Pod & Market.
Since 1971, the old Essex County Jail has sat abandoned and decaying in Newark’s University Heights neighborhood. Built beginning in 1837, this is among the oldest government structures in Newark and is on the National Register of Historic Places. The building desperately needs investment and a vision for its transformation. Few structures in this city reflect the history of racial segregation, immigration, and demographic change as well as this jail.
In Spring 2018, a graduate studio at Columbia University’s architecture school documented this structure. Eleven students and two architects documented and explored the jail’s condition, context, and history. They built upon this historical analysis to form preservation strategies. Each student developed a reuse proposal for museum, public park, housing, or prisoner re-entry and education center. By proposing 11 alternatives for a site long abandoned, the project symbolically transformed a narrative of confinement into a story of freedom.
Inspired by this academic project and seeking to share it with a larger audience, Zemin Zhang, Myles Zhang, and Newark Landmarks proposed to transform the results of this studio into an exhibit in the Hahne’s Building. With $15,000 funding from Newark Landmarks, the curators and a dozen collaborators translated Columbia’s work into exhibition. We enriched this exhibit with primary sources and an oral history project, recording the experiences of former guards and people who witnessed this site’s trauma.

.

.

Our curatorial work required translating a strictly academic project into an exhibit with language, graphics, and content accessible to the public. Columbia examined the jail’s architecture and produced numerous measured drawings of this site. While some of these drawings and all eleven reuse proposals are included in the exhibit, the focus shifted away from examining the jail as a work of architecture. Instead, we shifted focus toward the jail’s social history – to use the jail as a tool through which to examine Newark’s history of incarceration. As a result, much of the work required supplementing Columbia’s content with additional primary sources – newspaper clippings, prison records, and an oral history project – that tell the human story behind these bars. Few structures in this city reflect the history of racial segregation, immigration, and demographic change as well as this jail. As a youth in Newark, I frequently explored and painted this jail – I am therefore hoping for its reuse.
The finished exhibit will be on display from May 15 through September 27, 2019. We are making the case for preserving the buildings on this site and integrating them into the redevelopment of the surrounding – and largely blighted – neighborhood. The hope is that, by presenting this jail’s history in a public space where several thousand people viewed it per week, we can build support for its preservation and raise awareness of the need to stabilize this site. Over the next year, an architecture studio at the New Jersey Institute of Technology: College of Architecture and Design is conducting further site studies. Before any work begins, the next immediate step is to remove all debris, trim destructive foliage, and secure the site from trespassers. These actions will buy time while the city government and the other stakeholders determine the logistics of a full-scale redevelopment effort.

.

Launch Virtual Exhibit Website

.

 

24 Hours in the London Underground

This animation visualizes the number of riders in the London Underground over two weeks in 2010. Each dot corresponds to one station. Dot size corresponds to the number of riders passing through each station. Big dots for busy stations. Small dots for less busy stations. Dot color represents the lines serving each station. White dots are for stations where three or more lines intersect. Each dot pulsates twice in a day. Once during the morning commute. And again during the evening commute.
If you like this, please watch my animation of weekday vs. weekend commuting patterns in the NYC subway.

.

.

This animation does not pretend to be scientific. This is the representation of movement – a way to visualize the rhythmic pulsing of people through the London Underground as analogous to the breathing human body. The passage of red blood cells through the body’s veins is analogous to the movement of people through trains. The red blood cells bring oxygen and remove waste from the cells. Each semi-autonomous cell (with nucleus, membrane, etc.) is analogous to a workplace or home (with kitchen, walls, etc). Much like the cars and trains that move people and distribute their wealth from places of work to places of leisure, the red blood cells are the vehicles that link the heart and lungs (i.e. Central London) to the rest of the body (i.e. the London Metropolitan Region). This analogy of human form to city plan is a longstanding theme in urban studies.

.

Methodology:

No algorithm or dataset could capture the true complexity of London’s rhythmic breathing during the daily commute. Stations like King’s Cross St. Pancras, Waterloo, and Victoria rank among the busiest because they are multimodal transfer points between long distance trains, taxis, cars, and buses. So, although this animation visualizes these busiest stations with the largest dot size, this does not necessarily mean more people work or live in the vicinity of these stations. Admittedly, aspects of dot size are determined by immeasurable external factors – namely transfers from other transport modes to the London Underground.

This animation is based off of open-access data collected in November 2010. According to transport for London: “Passenger counts collect information about passenger numbers entering and exiting London Underground stations, largely based on the Underground ticketing system gate data.” Excluding London Overground, the Docklands Light Railways, National Rail, and other transport providers, there are 265 London Underground stations surveyed in this data set. For data collection purposes, stations where two or more lines intersect are counted as a single data entry. This is because at complex interchanges of multiple lines (e.g. Paddington), it is difficult to track which of the lines (e.g. Bakerloo, Circle, District, Hammersmith & City) a passenger is boarding. To complicate matters, passengers are often granted free transfers between lines at interchanges.

Every fifteen minutes, the numbers of passengers are counted from gate entry data, that is, four times per hour. This yields 96 time intervals over each 24 hour period. Multiplying the number of time intervals (96) by the number of stations (265), we get the number of data points represented in this animation: 25,440. Each of the stations was also assigned its corresponding latitude and longitude coordinate, so as to appear on the map in its appropriate spatial location. In the data analysis software (Tableau), we assigned each station:

  • A spatial location → derived from latitude and longitude coordinates coordinates
  • A color → according to the lines extant in 2010: Bakerloo, Central, Circle, District, Hammersmith & City, Jubilee, Metropolitan, Northern, Piccadilly, Victoria, Waterloo & City.
  • A size → scaled to reflect the passenger count in each 15 minute interval. The smallest dot corresponds to the rate of: zero passengers per 15-minute interval. The largest dot corresponds to the rate of about 7,500 passengers per 15-minute interval. This is the range applied to dot size: 0<X<7,500 where X represents “passengers/time.”
  • A time of day → each time interval represents one frame in the animation. We exported each frame from Tableau, conducted slight edits to background map opacity and texture, and then stitched the frames back together again – to create a flip book of sorts. With a rate of 12 frames per 1 second, or 96 frames per 8 seconds, a single day with 25,440 data points is compressed into 8 seconds of animation. This 8 second sequence is then looped.

By syncing the audio volume and background color with the data and time of day, the animation becomes more visually legible. The audio volume rises and falls to mirror the growth and contraction of each colored dot. The background color also shifts from black to gray to mirror the time of day. This was achieved by manually adjusting the background opacity in Adobe Illustrator from 100% to 50% for each of the 96 frames – as modeled with a cosine formula. The visualization was created in Tableau with post-production audiovisual editing in Final Cut Pro.

.


The eight second sequence played on a loop as a .gif file.

.

The Data:


View this infographic in Tableau Public.

.


Powered by TfL Open Data. Contains OS data© Crown copyright and database rights 2016.

.

Sources:

Lat Long Coordinates for Stations: Bell, Chris. “London Stations.” doogal.co.uk. doogal.co.uk/london_stations.php (retrieved 21 April 2019).
Ridership Statistics: “Our Open Data.” Transport for London. tfl.gov.uk/info-for/open-data-users/our-open-data (retrieved 21 April 2019). To access data, scroll down to the section entitled “Network Statistics,” then click where it reads “London Underground passenger counts data.”
“List of Busiest London Underground Stations.” Wikipedia. en.wikipedia.org/wiki/List_of_busiest_London_Underground_stations (retrieved 21 April 2019).
“London Connections Map.” Transport for London. tfl.gov.uk/corporate/publications-and-reports/london-connections-map (retrieved 21 April 2019).
Audio effects for animation: “Heartbeat.” Freesound. https://freesound.org/search/?q=heartbeat (retrieved 23 April 2019).

Northeast Corridor Drone Flight

.

The Northeast Corridor is the busiest railroad in North America by passenger traffic. This drone flight follows a high-speed Acela train making this 456 mile journey from Washington D.C. to Boston via Baltimore, Wilmington, Philadelphia, Trenton, Newark, New York City, Stamford, New Haven, and Providence.

This animation was created using the Google Earth Pro desktop application. We began by tracing the full route of the Northeast Corridor onto three-dimensional satellite imagery of the world. We then programmed our computer to follow this route while running a screen-recording to capture the progress. Finishing edits were then made in Final Cut Pro, including the addition of the inset map at bottom, the speedometer and clock at upper left, and edits to the pacing and sound effects. The time and distance markers are calculated using Google Maps.

The above animation is annotated, click here to view the uncut 28 minute drone flight.

Audio effects are courtesy of Freesound.org.
Piano accompaniment is Metamorphosis by Philip Glass
performed by YouTube user: “Coversart”

New York City Subway Ridership

Could the movement of people in the New York City subway system be visualized as rhythmic breathing?
Linguistically, we often describe cities in relation to the human body. Major roads are described as “arteries” in reference to blood flow. The sewers are the city’s “bowels.” Central Park is the “city’s lungs.” At various times in history, key industries like textiles or finance, were described as the “backbone” of this city’s economy. Cities are complex organisms. But, this wordplay makes the giant metropolis somehow more human and familiar.
The 424 subway stations and 665 miles of track are analogous to the human circulatory system. Every weekday, the subway carries 5.4 million people, mostly to and from work (c.2018).  This movement during the daily commute is highly ordered, structured, and rhythmic – as Manhattan’s population swells during the daily commute and then contracts by night. Each passenger symbolizes the movement of a single blood cell, operating as one cellular unit in a complex system. With each paycheck, the oxygen of capitalism flows from the heart of Manhattan to the cellular homes in the outer boroughs.
Commuting patterns are analogous to the rhythmic expansion and contraction of the human body while breathing. By contrasting weekday and weekend ridership patterns, we detect the city’s respiratory system.

.

sounds of breathingheartbeat, and subway are from freesound.org

In this animation based on subway ridership statistics by station:
● Dots are color-coded according to the subway lines they serve.
● White dots are for junctions between two or more lines of different color.
● Dot size corresponds to the number of riders entering each station within a 24-hour period.
● Larger dots are for busier stations. Smaller dots are for less busy stations.
Maybe the visual language of data can address this deeper need to humanize and soften the concrete jungle.

.

.

Also published by the Gothamist on 22 January 2019.
If you like this, please see my animation of ridership patterns over 24 hours in the London Underground.

.

.