Architecture of Solitary Confinement

A Case Study of Eastern State Penitentiary: 1821-1877

Master’s dissertation at Cambridge University: Department of Art History & Architecture

.

.

The perfect disciplinary apparatus would make it possible for a single gaze to see everything constantly. A central point would be both the source of light illuminating everything, and a locus of convergence for everything that must be known: a perfect eye that nothing would escape and a centre towards which all gazes would be turned.
– Michel Foucault, Discipline and Punish: The Birth of the Prison, 1975

.

Video Presentation

A summary of this dissertation research, delivered on April 23rd. View presentation slides.

.

Abstract

500 words

The central question facing prison design is: What purpose does prison serve? To pain the prisoner, lead them to self-reflection, or equip them with job skills to re-enter society? Society’s response to this question informs the prison’s design and appearance.

Prison Floor Plan in 1836

After defining prison’s purpose – be that a mixture of punishment or rehabilitation – what architectural form best reflects this purpose? There is a moral, religious, economic, and political agenda embedded in prison design. Given the diversity of design responses, this research focuses on one case study: Eastern State Penitentiary in Philadelphia, Pennsylvania (in operation 1829-1971).

Why this prison? This was one of America’s oldest (begun 1821), largest (from 400-1500 inmates), most expensive ($552,000 initial construction cost), and one of the first prisons to confine every prisoner in absolute solitary confinement (until officially ending in 1913).

Four themes offer an analytical lens for this case study.

  • Historical: This building emerged from the efforts of Quakers, merchants, and civic leaders in the Philadelphia Prison Society. Their observations of disease, existing prisons, and the justice system shaped their innovations in prison design. The architecture spoke to their belief that the loneliness of confinement architectures would lead prisoners to self-examination and change.
  • Architectural: This arrangement with hundreds of individual cells radiating from a central observation tower allowed a few guards to observe hundreds of prisoners. Architecture allowed guards to communicate with and observe prisoners but prevented prisoners from communicating with each other. Analysis of this geography of incarceration will reveal how architecture regulated communication and observation.

FOLLOW THE MONEY! Click image for full size flow chart.

  • Educational: This prison architecture reflected the educational agenda and intentions of the people who built it. There are two aspects of this theme.
    • Religion: The external appearance and internal configuration should inspire remorse in prisoners and visitors. The strategic use of medieval ornament on the castle exterior, the interior corridors that evoked a medieval cathedral, and the solitary cells modeled on monasteries reflected builders’ interpretation of historic precedents.
    • Solitary Labor: Cells and surveillance areas were designed to extract labor from prisoners. The prison administration used architecture as a tool to control and observe individual prisoners at work. Labor was intended to be both profitable to the institution and educational to the prisoners.
  • Institutional: This prison design fits into larger debates on how architecture shapes human behavior. Jeremy Bentham proposed in 1787 that a utopian society was possible through a “perfect” circular prison called the panopticon (a building resembling Eastern State). Michel Foucault proposed in his 1975 book Discipline and Punish: The Birth of the Prison that Bentham’s panopticon symbolized the modern and dystopian surveillance state. Eastern State is, therefore, a case study to critique Bentham and Foucault’s theories of surveillance and institutional power. This analysis of architecture and solitary confinement will situate and ground Bentham and Foucault’s theories in a case study.

.

Eastern State drawn as a castle from Old Europe

Each of four themes comprises one chapter in this dissertation. The debates surrounding solitary confinement are as relevant today as they were 200 years ago, as America continues to grapple with problems in prison design.

.

Click here to read draft of dissertation.

Opens in new window as PDF file.

.

Acknowledgments

This project would have been impossible without the support of my supervisor at Cambridge, Max Sternberg, and the commitment of my parents to put me through graduate school.

.

Three Related Digital Humanities Projects

.

Digital Reconstruction
of Eastern State: 1836-1877

Digital Reconstruction
of Jeremy Bentham’s Panopticon

Exhibition on Prison Design
Research begun before MPhil

.

 

Eastern State Penitentiary Digital Reconstruction: 1836-77

Presentation

Paper delivered 6 March 2020 at the University of Cambridge: Department of Architecture.
As part of my dissertation for the MPhil degree in Architecture and Urban Studies.

.

 

Digital Reconstruction

Created in Sketchup. Based on original drawings and plans of the prison. All measurements are accurate to reality.

With ambient music from freesound.org

.

Eastern State Penitentiary was completed in 1829 in northwest Philadelphia, Pennsylvania by architect John Haviland. It was the most expensive and largest structure yet built in America.

The design featured a central guard tower from which seven cell blocks radiated like a star. This system allowed a single guard to survey all prisoners in one sweep of the eye. A square perimeter wall surrounded the entire complex – thirty feet high and twelve feet thick. The decorative entrance resembled a medieval castle, to strike fear of prison into those passing. This castle contained the prison administration, hospital, and warden’s apartment.

As we approach the central tower, we see two kinds of cells. The first three cell blocks were one story. The last four cell blocks were two stories. Here we see the view from the guard tower, over the cell block roofs and over the exercise yards between. Each cell had running water, heating, and space for the prisoner to work. Several hundred prisoners lived in absolute solitary confinement. A vaulted and cathedral-like corridor ran down the middle of each cell block. The cells on either side were stacked one above the other. Cells on the lower floor had individual exercise yards, for use one hour per day. John Haviland was inspired by Jeremy Bentham’s panopticon. (Don’t know what the panopticon is? Click here for animation.)

Over its century in use, thousands visited and admired this design. An estimated 300 prisons around the world follow this model – making Eastern State the most influential prison ever designed.

.

360° Panoramic View from Guard Tower

.

Virtual Reality Computer Model

Shows prison as it appeared in the period 1836 to 1877 before later construction obstructed the original buildings.

.

.

Research Paper

When visiting Eastern State Penitentiary in Philadelphia, author Alexis de Tocqueville remarked in his 1831 report to the French government on the state of American prisons:

This Penitentiary is the only edifice in this country, which is calculated to convey to our citizens the external appearance of those magnificent and picturesque castles of the middle ages, which contribute so eminently to embellish the scenery of Europe. [1]

This penitentiary was, at its 1829 opening, the most expensive and largest structure ever built in the United States. Costing $432,000, this building covered a square area 670 feet to a side with walls 30-feet-high by 12-feet-thick and 23-feet-deep at the foundations. Inside, there was: “an entire seclusion of convicts from society and from one another, as that, during the period of their confinement, no one shall see or hear, or be seen or heard by any human being, except the jailor.”[2] About 400 prisoners were equipped with running water, steam heating, individual exercise yards, and (later) gas lighting.[3] These were “luxuries” that newspapers claimed not even the city’s wealthiest citizens could afford, and in an era when the U.S. White House lacked internal plumbing. The Register of Pennsylvania described in February 1830:

The rooms are larger, viz. containing more cubic feet of air, or space, than a great number of the apartments occupied by industrious mechanics in our city; and if we consider that two or more of the latter frequently work or sleep in the same chamber, they have much less room than will be allotted to the convicts [who live one to a room and] whose cells, moreover will be more perfectly ventilated than many of the largest apartments of our opulent citizens.[4]

Given the modern standards of service, technology, and location of this prison, it seems an odd choice to employ the external appearance of a medieval castle. American society lacked the medieval heritage of “old Europe.” The external castle appearance looked to history, while the internal facilities and technology all spoke of a modern future. Robin Evans explained the frequent use of castle imagery as follows: “It was the idea of the prison, not the fact of the prison, that was to engage the architect’s imagination, and the idea of the prison was built up from historical associations.”[5]

Of the several thousand visitors, tourists, and school children who passed through this attraction and the millions more who merely saw it from a distance, the imposing castle appearance was inescapable. In 1866, 76,000 visited, a large number considering more people visited as tourists than as prisoners.[6] In this same era: “The governments of Great Britain, France, Russia, and Belgium, followed each other in quick succession in these missions; and the printed official reports was subsequently issued, accompanied as they were by illustrative drawings, spread through Europe the fame of what was then generally regarded as a remarkable example of reform.”[7] Architect John Haviland (1792-1852) – known to contemporaries as the “jailor to the world”[8] – was a neo-classical architect by training and designed few other Gothic buildings over his 40-year career.[9] He intended these medieval battlements, narrow-slit windows, and portcullis gates to “strike fear into those who passed,” an instructive lesson to those contemplating a career in crime. Unexpected still is the fact that half the $432,000 construction cost was spent on the semi-decorative perimeter wall and external ornament, features not linked to reforming felons within and, in fact, invisible to the felons.[10] Yet, according to de Tocqueville, “It is of all prisons that which requires least a high enclosing wall, because each prisoner is isolated in his cell, which he never leaves.”[11] Why were Philadelphia’s political leaders and prison reformers so concerned with keeping up appearances?

This essay will present reasons for employing medieval imagery. Through analyzing the secular, cultural, and political reasons for this choice of style, we can understand the moral and educational agenda embedded in Eastern State’s appearance.[12] By analyzing the appearance and practice of solitary confinement taken here from 1829 to 1877, we can, by extension, understand more about the hundreds of radial prisons derived from Eastern State.

.

Acknowledgements

I am indebted to my supervisor Max Sternberg, to my baby bulldog, and to my ever-loving parents for criticizing and guiding this paper.

.

Click here to continue reading paper.

Opens in new window as PDF file.

.

[1] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[2] W. Roscoe, “Prison Discipline: Letter II,” National Gazette and Literary Register, 20 September 1827. From the Free Library of Philadelphia’s Pennsylvania Historical Newspapers Collection.
[3] Richard E. Greenwood, “Nomination form for Eastern State Penitentiary,” United States National Park Service, https://npgallery.nps.gov/AssetDetail/NRIS/66000680 (accessed 25 January 2020). This is the application submitted to protect this prison as a listed structure.
[4] Samuel Hazard, “Description of the Eastern Penitentiary of Penn’a,” The Register of Pennsylvania: devoted to the preservation of facts and documents and every other kind of useful information respecting the state of Pennsylvania 5, no. 7, 13 February 1830, 105.
[5] Robin Evans, “The Model Prison,” in The Fabrication of Virtue: English prison architecture, 1750-1840 (Cambridge University Press: 1982): 382-83.
[6] Jeffrey A. Cohen, David G. Cornelius, et al., “Construction and Alterations, 1822-65,” Eastern State Penitentiary: Historic Structures Report (Philadelphia: Eastern State Penitentiary Task Force, 1994): 88.
[7] “County Prisons,” in The Pennsylvania Journal of Prison Discipline 10, no. 2 (Philadelphia, 1855): 60.
[8] Norman B. Johnston, “John Haviland, Jailor to the World,” Journal of the Society of Architectural Historians 23, no. 2 (1964): 101-05, doi:10.2307/988164.
[9] John Haviland (author) and Hugh Bridgport (artist), The builder’s assistant containing the five orders of architecture, selected from the best specimens of the Greek and Roman (Philadelphia: John Bioren, 1818-1821).
[10] Julie Nicoletta, “The Architecture of Control: Shaker Dwelling Houses and the Reform Movement in Early-Nineteenth-Century America,” Journal of the Society of Architectural Historians 62, no. 3 (2003): 374, doi:10.2307/3592519.
[11] Gustave de Beaumont and Alexis de Tocqueville, “Construction of the Prisons,” in On the Penitentiary System in the United States: And its Application in France; with an Appendix on Penal Colonies, and also, Statistical Notes (Philadelphia: Carey, Lea, & Blanchard, 1833): 74.
[12] 1829: prison opened. 1877: prison significantly expanded and operations restructured. “Timeline,” Eastern State Penitentiary, https://www.easternstate.org/research/history-eastern-state/timeline (accessed 25 January 2020).

.

.

Related Projects

Master’s Dissertation on this Prison
Animation of Jeremy Bentham’s panopticon
Computer model of panopticon in virtual reality
Lecture on problems with the panopticon

Manufacturing the Picturesque at Central Park

Figure 1. Map of completed Central Park in 1873

.

Central Park is not only the major recreational facility of Manhattan but also the record of its progress: a taxidermic preservation of nature that exhibits forever the drama of culture outdistancing nature. Like the [Manhattan] Grid, it is a colossal leap of faith; the contrast it describes – between the built and the unbuilt – hardly exists at the time of its creation.

– Rem Koolhaas, Delirious New York1

.

Koolhaas presents one of the challenges core to Central Park’s construction: the tension between natural and manmade, urban and rural. What sets this park apart from most other parks is its yearning to seemingly become something that it clearly is not: natural. Many other pocket parks in this city incorporate existing topography and trees into their design – yet they are smaller. And from the confines of their interior, the sights and sounds of the city are hard to escape. Central Park succeeds in permitting its visitor to make-believe, at least momentarily, that they have left the city and are immersed in the countryside. The original park contained, for instance, a sheep pasture and barn, a nature preserve called “The Ramble,” and a dairy for urban mothers to buy fresh milk.

The scale of Central Park and the engineering that went into its creation is not unprecedented – architects and engineers have completed far larger infrastructure projects. The New York City watershed, for instance, catches all the rainfall within a 2,000 square mile area, stores this water in 19 reservoirs, and then transports this water up to 150 miles in underground pipes that serve nine million people.2 Central Park, by comparison, was built by some of the same engineers but is a mere three-square-miles of “improved” wilderness. However, what is surprising is the degree to which Central Park’s landscape features seem natural, as if land speculators and developers had chanced upon the park and left it as untouched as they had found it, except framed on four sides by the city grid (figure 5). So successful is this intervention that there is often the popular misconception that it is natural. This Huffington Post article, for instance: “I know that it may come as a shock to some, but New York’s Central Park is not an act of God. It might seem that way, especially in the woodlands, which appear so authentically, well, natural.”3

.

Figure 2. Earthworks projects in 1858, most likely in the vicinity of 72nd Street

.

In the 1857 text entitled “The Plan for the Park,” the project’s landscape architect, Frederick Law Olmsted (b.1822-d.1903), writes that it “seems desirable to interfere with its easy, undulating outlines, and picturesque, rocky scenery as little as possible, and, on the other hand, to endeavor rapidly and by every legitimate means, to increase and judiciously develop these particularly individual and characteristic sources of landscape effects.”4 Olmsted’s claim is a good place to start because it expresses a paradox central to the design. Olmsted’s project “interferes” with the landscape “as little as possible” simultaneously with large-scale efforts to move soil, blast rock, and plant trees that employed – at the height of work – some 4,000 men.5 Around five million cubic feet of rock and soil were blasted and removed from the park. Rem Koolhaas interprets this quote from Olmsted as follows: “If Central Park can be read as an operation of preservation, it is, even more, a series of manipulations and transformations performed on the nature ‘saved’ by its designers.”6

How can we reconcile these two seemingly opposed tendencies in Central Park – natural vs. manmade – when almost all manmade features are disguised as natural? I propose that we can better understand the park by dispensing with the pretense that it is in any way natural.

Central Park presents an unusually refined interpretation of nature. Of the approximately 20,000 trees of 175 species, solidly 60% are non-native to New York.7 Of the seven lakes contained within the park, none are natural to the terrain and are mostly the result of damning existing streams. Of the paths, trails, and roads winding through the park – with curves to match the contours of hills and valleys – none are original, nor do they correspond to pre-development dirt roads and Lenape Indian trails.8

.

Figure 3. Frederick Law Olmsted’s 1857 drawing of the park before and after the planned “improvements.”
The style and content of this image evokes the work of English landscape architects and Humphry Repton.

.

Before work began in 1857, the pre-development topography was insufficient for use as a public park. The Manhattan grid – comprising some 2,000 plus city blocks each measuring exactly 200 feet wide – implies a flat terrain and originally made no accommodations for interfering rivers, hills, or marshes. Looking at a street map of the island, one might be surprised to learn that the terrain rises and falls the length of the island from zero feet at sea level to ~250 feet at its highest peak (figures 4 and 16).9 The name “Manhattan” is a Lenape Indian word that means “Island of Many Hills.”10 Yet, despite the variety of sites planners could have chosen from, the park’s rectangular boundaries were not determined by the availability of topographic features appropriate for a park.

.

Figure 4. British Headquarters Map of Manhattan Island from c.1789. Only the shaded pink section at top of island is developed at city-level density. The rest consists of rolling hills, forest, and farmland that inspired Henry Hudson, the first European who “discovered” the island in 1609, to remark that: “The land is the finest for cultivation that I ever in my life set foot upon.”11

.

Instead of topography, three main factors determined the location: First, planners needed to choose a site close to the expanding city yet far enough away that the land could be acquired cheaply and without displacing large numbers of residents. Second, the city’s population had grown 160% in the twenty years from 1840 to 1860,12 and the city’s existing Croton reservoir (then located in the exact center of the proposed park) was insufficient. The city needed an expanded reservoir; the most convenient location on Manhattan Island for this reservoir was next to the existing one. The otherwise purely practical infrastructure of water supply could thus become a landscape feature.13 Third, the city planned to offset the approximately five-million-dollar price tag of land acquisition and construction through corresponding increases in the taxable property values of land adjacent the park. The architects also went so far as to suggest “a toll of three cents on visitors coming on foot, and six cents for all others” collected on visitors to fund park maintenance and offset construction costs. (This was never implemented.)14 Olmsted also writes:

.

Land immediately about the Park, the frontage on it being seven miles in length, instead of taking the course anticipated by those opposed to the policy of the Commission, has advanced in value at the rate of two hundred per cent per annum. […] It is universally admitted, however, that the cost, including that of the original off-hand common sense blunders, has been long since much more than compensated by the additional capital drawn to the city through the influence of the Park.15

.

The park’s location might be strengthened by the simple fact that a linear or smaller park along the waterfront would have fewer miles of frontage of taxable properties adjacent to the park. For instance, locating just one side Central Park along the Hudson and East River (instead of the island’s center) would result in 2.5 miles fewer of abutting properties. Within the following decades, the properties in the Upper East and Upper West Side that overlook the park became (and remain) among the most expensive in the city. This method of development – sacrificing a fraction of the land for park use so as to increase the monetary value of the adjoining lands – was common in New York City (e.g., Gramercy Park) and particularly in London’s fashionable West End and Hyde Park neighborhoods.16 What makes Central Park different, though, is the unprecedented scale of this investment to boost civic pride and to increase property taxes.

.

Figure 5. A c.1836 engraved map of mid-Manhattan with the outline of the future park drawn in orange ink c.1858. The incongruity between the park’s outline and the topography is also illustrated by the fact that the park’s northern boundary (originally at 106th street) would require blasting through a one hundred foot high solid-rock mountain to make way for the perimeter street.

.

Given these priorities – real estate and infrastructure interests over aesthetics – the choice of location was not ideal (figure 5). The rough terrain was mostly barren of trees and was a mosquito-laden wetland. (More readily converted and forested terrain was originally proposed along the East River in the vicinity of Roosevelt University.) Before beginning the architect’s work of planting trees and building scenic garden features, the first major task was to prepare the land and make it suitable for public use. To that effect, Olmsted contracted the engineer (and later military coronel) George E. Waring to drain the swamp. Waring directed 400 men to construct some 105,000 linear feet (32 kilometers) of drainpipes over two years (figure 8).17 His military-style approach toward clearing the park followed him into later life when he became New York City’s sanitation commissioner. As commissioner, he required all his street cleaners to wear white pith helmets (identical to those worn by European colonists in Africa) and then declared the war on filth. Given his interest in sanitation and dislike of dirt, his answer to the park commissioners’ question is revealing:

.

Commission’s Question: “To what degree shall the park be drained?”
Waring’s Answer: “Totally.”
Q: “By what form of drains?”
A: “Earthenware, of varying calibers.”
Q: “At what depth?”
A: “Three feet in open glades, four feet in forested areas.”
Q: “For best economy, by contract or days’ work?”
A: By days’ work because of the endlessly varied conditions requiring uncommon on-site super vision.”18

.

Figure 6. Buried Pipes in Connection with the New Reservoir, c.1862.

.

Figure 7. General View of North Reservoir from 102nd Street, 23 October 1862.
All the land visible here is now buried beneath the reservoir.

.

Another requirement asked of the planners was to incorporate a new reservoir into the park (figures 6-7 show terrain now flooded beneath reservoir). The existing stone reservoir and Croton Aqueduct, completed 1842, were no longer sufficient19 despite Walt Whitman’s claim that: “Ages after ages these Croton works will last, for they are most substantial than the old Roman aqueducts.”20 To augment the Croton’s capacity, the new reservoirs combined covered approximately 20% of the park’s surface area over terrain that otherwise would have become parkland. Before Olmsted had even submitted his plan in 1857, the engineer Egbert L. Viele, who had been surveying the parkland since 1853,21 had decided on placing this reservoir on a natural depression in the land, to be augmented by an earthen embankment around the perimeter. Olmsted’s final proposal follows the contours of Viele’s proposed reservoir exactly – illustrating the degree to which engineering needs dictated the landscape architect’s choices.

.

Figure 8. Map of drainage system on lower part of the Central Park as far as completed up to 31 December 1858. On the left is 59th Street, 5th Avenue is at bottom, and 8th Avenue (i.e. Central Park West) is at top. This map only illustrates the paths of future carriage roads within the park – that is, the thick white lines that wind through the landscape. Red lines indicate the buried clay pipes that drain water from the marshy soil – and many continue to do so today. Shaded gray areas correspond to areas to be raised with dirt fill. The shaded blotches are for preserved boulders protruding above ground. The slightly off-kilter rectangle in center is for the area drained to create the Central Park Mall – the only geometrically symmetrical part of the park.

.

Although the park was extensively surveyed and re-landscaped there was, nonetheless, an attempt to appear rustic and unkempt. The architect, Calvert Vaux, blanketed the park in little pavilions and bridges made from unpolished and rustic wood with bark still on the beams – a nineteenth century re-reading of the primitive hut.22 The passage from the southern to the northern reaches of the park was also a parable in the march of civilization and progress. By this time, the city was advancing northward up the island from its historic center in Lower Manhattan (figure 9). Within forty years, the island would be completely built-up. With this recognition of urban sprawl, Olmsted possibly named the park’s 16 original entrances to reflect the city’s movement and types of people living in New York. In order from south to north, the names are as follows: Artisan’s Gate, Merchant’s Gate, Scholar’s Gate, Woman’s Gate, Inventor’s Gate, Miner’s Gate, Mariner’s Gate, Engineer’s Gate, Gate of All Saints, Woodman’s Gate, Boy’s Gate, Girl’s Gate, Stranger’s Gate, Warrior’s Gate, Farmer’s Gate and Pioneer’s Gate. This list almost reads as a list of social classes in increasing order of proximity to raw nature.23 The design features also evolve over distance. The southern reaches (also the busiest section due to the proximity to the city center) was built first and included more pruned botanic features, rectangular parterres of trees, and the proposed flower garden. Olmsted thought it appropriate to leave the northern reaches of the park as wooded as possible with a c.1812 fortress left standing atop a mountain as a picturesque ruin in the style of English garden follies. The northern reaches (also surrounded mostly by farmland at this time) were intentionally more heavily forested, had fewer of the park’s signature bridges, retained the park’s largest rock escarpment, and for the first few decades of its life contained no statues, monuments, or plaques commemorating important people. By contrast, about two dozen monuments to Western Civilization’s great cultural and political leaders (all male) were concentrated in the south: William Shakespeare (installed 1872), Thomas Moore (1879), Alexander Hamilton (1880), Beethoven (1884), Columbus (1894), etc.24 Paradoxically, while the south may appear more refined and cultivated than the north, the pre- development terrains in both sections were equally crafted and manipulated. There is, here, the illusion of moving north toward nature, instead of the reality.

.

Figure 9. The extent of northward marching urban development by 1857, with the park beyond the developed city. Notice how large the park is relative to the city’s surface area, and how the city becomes rural travelling north. View this animation online.

.

At this stage, we might arrive at a better understanding by shifting the descriptive language. Perhaps we should describe the park not in terms of nature or landscape – given that considerations of the natural were not foremost in the design. We might do better to describe the park in terms of infrastructure, engineering, movement, and social class. Indeed, one of the strengths of Olmsted’s proposal – and one of the reasons he won out of the 33 designs submitted – was his decision to separate the park by four different social classes and speeds of movement (figures 10 and 11), each of which corresponded to a width of road and minimum permitted vehicle turning radius (color-coded in figure 12).25 This detailed plan for road separation and drainage were finished before the architects had even begun working on planting diagrams or selecting which species of trees would make for the most varied landscape composition. There were four classes of segregated roads. First, because of the park’s length, size, and location, there would be many vehicles passing through the park, not for leisure, but simply to pass from one side of the park to the other as fast as possible. For these vehicles, the engineers planned four buried transverse roads with entirely separate right-of-way. These straight and wide roads at no point intersected other types of traffic and were entirely below grade level. Second, there were carriage roads for slightly slower carriage traffic within the park. While the relatively straight transverse roads were for practical through-traffic, these carriage roads were for leisure. Third, the next highest speed consisted of a narrower and more curving path than the carriage roads, gravel paths for horseback riders. Horseback riding was a popular leisure and sporting activity – these roads are now largely used for joggers who move faster than pedestrians but slower than vehicles. Fourth, the most ubiquitous road type of all consisted of unpaved footpaths for pedestrians on foot only. With the help of bridges and tunnels (figure 11), at no point did these four systems of conveyance intersect, leading Olmsted to claim: “By this means it was made possible, even for the most timid and nervous, to go on foot to any district of the Park designed to be visited, without crossing a line of wheels on the same level, and consequently, without occasion for anxiety and hesitation.”26

.

Figure 10. Author’s diagram of road types

.

Figure 11. 1862 cross-section of transverse road. Notice how the trees above the road are drawn small, as if to exaggerate the tunnel’s monumentality.

.

WALK          RIDE          DRIVE          TRANSVERSE

Figure 12.

.

Incidentally, these separate and unequal paths also corresponded to different social classes. The wealthiest individuals – those who could afford a carriage, horse, and driver – would implicitly have exclusive use of the carriage roads, while horseback riders had their separate right of way, and service vehicles were segregated below grade. The rest of the public and working classes were restricted to the footpaths, where security guards patrolled the park and prohibited them from loitering, picking flowers, picnicking, or forming large groups. Elizabeth Blackmar and Roy Rozenzweig write: “In the decade after the opening, more than half of those visiting the park arrived in carriages (which less than 5 percent of the city’s population could afford to own, and each day there were elaborate carriage parades in the late afternoon.”27 Yet, disproportionate design considerations and park surface area seems to be given to this minority of users on carriages. We should return here to the fact that city leaders intended this park to boost property values and taxes on the wealthy residents who lived adjacent to the park. It is only natural, then, that the park design should reflect their interests and preferences.

.

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Map of middle section of the park between the 79th Street and 97th Street transverse roads, the empty area at lower left hand corner is the future site of the Metropolitan Museum of Art. The blue road corresponds to the horseback trail, now jogging path. After starting at the 59th Street entrance and passing through manmade forests, valleys, and tunnels, horseback riders’ visual experience culminated as they circled this manmade reservoir.

.

These maps of the park – color coded by road type – can help us begin to unravel the degree to which the current landscape is manmade. At first glance, the smooth passage of roads and their organic contours may seem effortless, as if they were laid out along existing roads with regards to existing topography. By separating the different grades of traffic by color (figure 14) and upon closer examination, there is a complex and extensive hidden infrastructure beneath these natural appearances (figure 13).

.

Figure 16. 1811 Commissioners’ Plan

.

These maps also reveal a park that is not separate from or opposite to the city, but instead a continuation of the city. A glance at a map of Manhattan reveals two seemingly different philosophies of urbanism, as imprinted through the laying of road networks. Most of the island is covered in the orthogonal 1811 grid (figure 16). This grid gives no consideration to topography, nature, or aesthetics. And then, there is the three square mile area of Central Park with winding and seemingly organic roads. The absence of symmetry and straight lines might lead one to conclude that the park reflects an attempt to harmonize with nature. Existing popular literature commonly situates this park as a reaction to the grid’s perceived faults and excesses. Upon closer examination, this park’s near obsessive attention to detail, its concern with segregated movement, and its reliance on complex (but hidden) infrastructure reveal the park to be a continuation of the 1811 grid’s interest in real estate, property values, and engineering, more than it is a prosaic and romantic reaction to excessive urban growth. This infrastructure is also wrapped up in a coded message about the progress of civilization. The passage from cultivated south to rugged north can read as a condensed representation of the passage from the center of civilization to its undeveloped edges. One should also keep in mind that simultaneous to the construction of Central Park, engineers and developers were at work on the other side of the country clearing the American West for development. Within the following decades, the extent of farmed land would creep westwards on former Indian soil, generally following the paths of railroads toward California. Does the design of Central Park mirror 1860s American society’s belief in the civilizing power of science and technology to tame the wilderness? Alternatively, is Central Park’s design just a matter-of-fact effort to boost the city’s tax revenues, with no moral agenda intentionally encoded in the park design? Such questions might be impossible to answer, given the lack of conclusive evidence.

But, now is the time to return to the question we started with: How can we reconcile these two seemingly opposed tendencies – natural vs. manmade? I posit that by describing Central Park in the language of infrastructure and real estate – instead of nature and aesthetics – we can arrive at a more accurate assessment of the park’s origins, objectives, and construction process. Seemingly, the only way to adapt this ill-suited site into a park that fulfilled the nineteenth century definition of the picturesque was through public works that, upon their completion, effaced almost all traces of the people, trees, and landscape that existed before. The engineering here succeeds insofar as it is invisible and functions as if no manmade intervention had ever occurred. While at work, Olmsted made this prediction on the future of Manhattan Island:

.

The time will come when New York will be built up, when all the grading and filling will be done, and when the picturesquely-varied rock formations of the Island will have been converted into formations for rows of monotonous straight streets, and piles of erect buildings. There will be no suggestion left of its present varied surface, with the single exception of the few acres contained in the Park.28

.

The park is an architectural contradiction. On the one hand, its rock formations, hills, and valleys look to a pre-developed and rugged Manhattan in the public imagination, a landscape more fictive than real. On the other hand, the park’s very presence is a testament to the power of real estate interests, engineers, and the water supply board in shaping the city. This tension underlies the landscape features now almost universally praised for their vision, beauty, and harmony.

.

.

To read or circulate this paper in print copy, please download as a PDF at this link.

.

Acknowledgements:

I am thankful to Zeynep Çelik Alexander for reading and commenting on drafts of this paper in the architectural history major’s colloquium course. I am also thankful to Elizabeth Blackmar for her inspiring lectures on urban development and Central Park.

.

List of Figures:

  1. Lionel Pincus and Princess Firyal Map Division, The New York Public Library, “Map of the Central Park” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/4e6a6080- 3569-0134-549e-00505686a51c (retrieved 4 May 2019).
  2. Art and Picture Collection, The New York Public Library, “View in Central Park, Promenade, June 1858,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/510d47e1- 0fb6-a3d9-e040-e00a18064a99 (retrieved 4 May 2019).
  3. Frederick Law Olmsted and Calvert Vaux (designers); Calvert Vaux (artist), Greensward Plan presentation board with “Present Outlines” (above) and “Effect Proposed” (below): No. 1. From Point A (view at Fifth Avenue entrance), 1858, graphite, wash and white lead on paper, New York Municipal Archives.
  4. Lionel Pincus and Princess Firyal Map Division, The New York Public Library. “Map of New York City and of Manhattan Island with the American defences in 1776,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/ee2f1060-d488-0135-3577-67321a8090bc (retrieved 4 May 2019).
  5. David H. Burr (cartographer), Topographical Map of the City and County of New-York and the Adjacent Country (proof impression of center sheet), published by J.H. Colton and Co., New York, 1836, engraving, ca. 1836, the Metropolitan Museum of Art.
  6. Rare Book Division, The New York Public Library, “Pipes in Connection with the New Reservoir,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/510d47e3-6289- a3d9-e040-e00a18064a99 (retrieved 4 May 2019).
  7. Rare Book Division, The New York Public Library, “General View of N. Reservoir from 102nd St. October 23, 1862,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/510d47e3-6288-a3d9-e040-e00a18064a99 (retrieved 4 May 2019).
  8. Lionel Pincus and Princess Firyal Map Division, The New York Public Library, “Map of Drainage System on Lower Part of the Central Park as far as completed up to December 31st, 1858,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/7fe3e680-0c6a-0132-bc3c- 58d385a7bbd0 (retrieved 4 May 2019).
  9. Author’s illustration from Here Grows New York animation, https://youtu.be/f6U7YFPrz6Y?t=226 (retrieved 5 May 2019).
  10. Author’s diagram of road types
  11. Calvert Vaux (architect), W.B. Swan (delineator), and Sarony, Major, and Knapp (lithographers), Bridge “E” over Transverse Road No. 2, 1861, lithograph, from Fifth Annual Report of the Board of Commissioners of the Central Park, January 1862, the Metropolitan Museum of Art.
  12. “Map of the Central Park” New York Public Library Digital Collections, 1873, modified by author with blue, red, and green color-coding.
  13. “Map of Drainage System on Lower Part of the Central Park as far as completed up to December 31st, 1858.”
  14. 1873 map of Central Park, color-coded by author to indicate types and widths of roads
  15. Ibid.
  16. Manuscripts and Archives Division, The New York Public Library, “Plan of Manhattan Island,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/26e27e80-be8a-0131- bf1a-58d385a7bbd0 (retrieved 4 May 2019).
  17. Irma and Paul Milstein Division of United States History, Local History and Genealogy, The New York Public Library, “Central Park Tunnel,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/a44288b4-9bdc-b31f-e040-e00a18060314 (retrieved 5 May 2019).
  18. Rare Book Division, The New York Public Library, “Men standing on Willowdell Arch,” New York Public Library Digital Collections, http://digitalcollections.nypl.org/items/94b7acd9-dc81-74f7-e040- e00a18063585 (retrieved 5 May 2019).

.

Works Cited:

  1. Rem Koolhaas, “Prehistory,” in Delirious New York (New York: The Monacelli Press, 1994), p.21.
  2. Kenneth Jackson, Lisa Keller, et al., “Water Supply,” in The Encyclopedia of New York City (New Haven: Yale University Press, 2010), p.1381-86.
  3. Charles A. Birnbaum, “The Big Task of Managing Nature at New York’s Central Park,” The Huffington Post, 12 September 2012, https://www.huffpost.com/entry/an-unlimited-range-of-rur_b_1870450? (retrieved 15 May 2019).
  4. Kenneth Jackson and David Dunbar (editors), “Selected Writings on Central Park, Frederick Law Olmsted (1858, 1870),” in Empire City: New York through the Centuries, (New York: Columbia University Press, 2002), p.279. This anthology of urban history assembles various primary sources from across NYC history into a single book.
  5. Ibid., “Central Park,” p.222-24.
  6. Rem Koolhaas, Delirious New York, p.23.
  7. Robert Demcker, “Central Park Plant List and Map Index of 1873,” published by the Frederick Law Olmsted Association and The Central Park Community Fund, 1979.
  8. Concluded from comparing maps of the park pre and post construction.
  9. Hilary Ballon, “Introduction,” in The Greatest Grid: The Master Plan of Manhattan 1811-2011 (New York: Columbia University Press, 2012), p.13-15.
  10. Eric Sanderson et al., The Welikia Project, https://welikia.org/about/how-it-all-began/ (retrieved 15 May 2019). – Sanderson created the most detailed visualization of Manhattan’s pre-development topography.
  11. “Early Descriptions of New Netherland,” New Netherland Institute: Exploring America’s Dutch Heritage, https://www.newnetherlandinstitute.org/history-and-heritage/additional-resources/dutch-treats/early-impressions-of- new-netherland/ (retrieved 15 May 2019).
  12. “NYC Total and Foreign-born Population 1790 – 2000,” NYC Planning Department, https://www1.nyc.gov/site/planning/data-maps/nyc-population/historical-population.page (retrieved 15 May 2019).
  13. The old rectangular shaped Croton Reservoir covered 8% of the park’s area. The new reservoir covered about 12%. Combined they covered 20%. Values calculated by author using Google MyMaps.
  14. Frederick Law Olmsted and American Social Science Association, Public Parks And the Enlargement of Towns: Read Before the American Social Science Association At the Lowell Institute, Boston, Feb. 25, 1870, (Cambridge: Printed for the American Social Science Association, at the Riverside Press, 1870), p.35. https://catalog.hathitrust.org/Record/008726621 (retrieved 4 May 2019).
  15. Ibid., p.35.
  16. Jon Campbell and Christopher Robbins, “The Origin Story Of Gramercy Park Is A Classic NYC Tale Of Real Estate Hucksterism, Cronyism, And Gate Crashing,” The Gothamist, 28 June 2018, http://gothamist.com/2018/06/28/gramercy_park_history_amazing.php (retrieved 15 May 2019).
  17. Morrison H Heckscher, “Creating Central Park,” The Metropolitan Museum of Art Bulletin, New Series, 65, no. 3 (2008): p.40, http://www.jstor.org/stable/25434142 (retrieved 15 May 2019).
  18. Ibid.
  19. A mere 94 years after opening, the old Croton reservoir was deemed inadequate, drained of water, and filled with debris from subway excavations.
  20. “Murray Hill Reservoir, November 25, 1849, Walt Whitman,” in Empire City, p.207.
  21. “Creating Central Park,” p.18.
  22. Patricia Heintzelman for the U.S. Department of the Interior, Central Park Nomination Form for NRHP, 1966, https://npgallery.nps.gov/AssetDetail/NRIS/66000538 (retrieved 15 May 2019).
  23. To my knowledge, the claim that Olmsted named the gates in 1862 to mirror the transition from civilization to nature has never been made before. However, Olmsted describes in writing how the terrain should evolve from smooth to rough during the passage north; it follows for naming conventions to reflect this shift.
  24. Wikipedia assembles lists of monuments, parks, streets, etc. organized as metadata with lat-long coordinates. Plotting these coordinates on a map and eliminating recently added monuments reveals a clear spatial concentration of artwork and sculpture in the south. https://en.wikipedia.org/wiki/List_of_sculptures_in_Central_Park (retrieved 16 May 2019). Identical list also found from NYC Parks Department: https://www.nycgovparks.org/parks/central- park/monuments (retrieved 16 May 2019).
  25. Landmarks Preservation Commission, Central Park Designation Report for the NYC Planning Department, 1974, http://s-media.nyc.gov/agencies/lpc/lp/0851.pdf (retrieved 15 May 2019).
  26. “Selected Writings on Central Park, Frederick Law Olmsted (1858, 1870),” in Empire City, p.281.
  27. “Central Park,” in The Encyclopedia of New York City, p.223.
  28. “Selected Writings on Central Park, Frederick Law Olmsted (1858, 1870),” in Empire City, p.279.

Architecture of Exclusion in Manhattan Chinatown

 

 

 

Canal & Mott Streets

In 1882, the Chinese Exclusion Act restricted Chinese immigration to the US, prohibited Chinese females from immigrating on grounds of prostitution, and revoked the citizenship of any US citizen who married a Chinese male. The consequences of this xenophobic legislation led Chinese immigrants to flee racial violence in the American West and to settle in Manhattan’s Chinatown. With a population now of around 50 thousand (2010 US Census), this remains the largest ethnically Chinese enclave in the Western Hemisphere.

Doyers Street – Barbershop Row

Thanks to New York’s geographic location as a port city with high industrial employment and easy connections to the American interior, this city became the primary point of entry for waves of immigrant groups in the nineteenth century: Irish, Germans, Italians, and Eastern Europeans. What makes the Chinese different, though, is the survival and resilience of the immigrant community they created. Other immigrant groups – namely the Germans and Irish – converged around large neighborhoods and surrounded themselves with familiar language and businesses. Of these enclaves, all have since disappeared as the children of these first-generation immigrants successfully assimilated into American society, earned higher incomes than their parents, and therefore chose to disperse to non-immigrant neighborhoods with better housing stock and schools. Yet, the Chinese remained.

The resilience of this community results from a confluence of factors: cultural, geographic, and (most of all) racial. Of innumerable immigrant groups to the US, the Chinese were among the only to have the most restrictive laws placed on their immigration. This stigma drove them toward three types of low-skilled manual labor – with which white Americans still deeply associate with the Chinese – laundries, restaurants, and garment manufacturing. Like the Chinese, other groups – particularly Irish-immigrant females – began working in these professions, but they soon climbed the social ladder.

Mosco & Mulberry All

As an architectural historian, I am fascinated about how this political and racial agenda of exclusion is imprinted in the built environment of Chinatown. To present this neighborhood’s geography: For most of its history, Chinatown was bordered to the north by Canal Street, to the east by Bowery, and to the South and West by the city’s federal courthouse and jail. The center of this community lies on the low wetland above a filled-in and polluted lake, called the Collect Pond. Historically, this area contained the city’s worst housing stock, was home to the city’s first tenement building (65 Mott Street), and was the epicenter for waterborne cholera during the epidemics of 1832 (~3,000 deaths) and again in 1866 (1,137 deaths). The city’s first slum clearance project was also in Chinatown, to create what is now present-day Columbus Park.

Race-based policies of exclusion can take different forms in the built-environment. The quality of street cleaning and the frequency of street closures are a place to start. Some of the city’s dirtiest sidewalks and streets are consistently located within Chinatown – as well as some of the most crowded with street vendors (particularly Mulberry and Mott Street). Yet, as these streets continue northward above Canal Street, their character markedly changes. The sections of Mulberry Street in Chinatown are unkempt and always open to traffic and truck deliveries.

The street sections immediately north (in the enclave of Little Italy) are frequently cleaned and closed for traffic most of the year to create a car -free pedestrian mall bordered by Italian restaurants. These policies continue when examining the proximity of Chinatown to centers of political power and criminal justice. Since 1838, the city’s central prison (named the Tombs because of its foreboding appearance and damp interior) is located just adjacent to Chinatown. The Fifth Police Precinct is also located at the center of this community at 19 Elizabeth Street.

Bayard & Mulberry Grocery

Yet, although this neighborhood was ranked 58th safest out of the city’s 69 patrol areas and has a below-average crime rate, the incarceration rate of 449 per 100,000 people is slightly higher than the city average of 443 per 100,000 and significantly higher than neighborhoods immediately adjacent – like SoHo – that have a rate well below 100 per 100,000. NYC Open Data also reveals this neighborhood to be targeted for certain – perhaps race-specific and generally non-violent crimes – like gambling and forgery. Or, the only financial institution to face criminal charges after the 2008 financial crisis was NYC Chinatown’s family-owned Abacus Federal Savings Bank – on allegations of mortgage fraud later found false in court by a 12-0 jury decision in favor of Abacus.

When it comes to tourism, Americans seem to have a paradoxical relationship with Chinatown’s “oriental” culture and cuisine. On the hand, there is a proclaimed love of Chinese cuisine and art, as evidenced by the profusion of Chinese-themed restaurants for tourists in Chinatown, or as evidenced by the phenomenon in art history for western artists (and particularly French Impressionists) to incorporate decorative motifs from East Asian woodcuts and ceramics into their work. There is simultaneously exclusion of the people – from the society who created this food and art – from political power and social mobility. Still today, Americans seem to want competitively priced Chinese products without suffering the presence of the foreigners who produced these products.

Forsyth & Delancey Grocery

Let us clarify one thing: the division in Chinatown is by no means “apartheid.” It is perhaps a division more subtle and difficult to notice. It expresses the kind of unequal treatment – antiquated housing, crowded conditions, and municipal apathy – that face many immigrant groups in the US. What we see in Chinatown is something altogether more complicated – as this neighborhood is also active in the process of gentrification with rising rents pushing out older Chinese businesses. If and when Chinese immigrants become fully integrated into American society, to what extent should the architectural fabric of this Chinese enclave be preserved, considering that its very existence is possibly a marker of race-based exclusion and the century-long challenge of the Chinese in America?

This essay originally appeared in the spring 2019 edition of the Asia Pacific Affairs Council journal at Columbia University’s Weatherhead East Asian Institute. Click here to read this essay in its original format.

The Church of Saint-Denis and Gothic Architecture
A Case Study

.

The following presentation, given on 8 May 2019, accompanies my undergraduate thesis in the History & Theory of Architecture. The paper was written under the direction of Columbia faculty adviser Stephen Murray in the art history department. This work is a continuation of my computer animations and visualizations of Amiens Cathedral for Professor Murray, published here.

.

The full thesis is available here to read online. Scroll down for powerpoint presentation and model.
The abstract is copied below:

.

Around the year 1140 CE, a new style of architecture and way of thinking about how to construct buildings developed in Northern France. This way of building soon spread across Europe, seeding cathedrals, monasteries, abbeys, and churches wherever masons traveled. Centuries later – long after masons ceased building in this style – Renaissance architectural theorists began calling this style the “Gothic.”

.

The one church traditionally associated with this 1140s stylistic shift from the earlier Romanesque style to the newer Gothic style is a small building just north of Paris: the Abbey Church of S-Denis. However, although the popular narrative of architectural history assumes this building to be the world’s first Gothic building, little structural evidence to this effect survives. This thesis follows two strains of inquiry: 1) why this church is deeply associated with the origins of Gothic and 2) how surviving fragments of the 1140s S-Denis fail to support claims of the structure’s primacy.

.

Why does this matter? S-Denis reveals a tendency to tell history – particularly architectural history – in terms of individual structures when, in fact, the origins of the Gothic style might be more complex. By abandoning a Paris and S-Denis centric origins story, we might be able to better appreciate the diverse array of local sources from which medieval masons found inspiration to build.

.

.

Computer Model

Central to the argument that the Gothic style originated at S-Denis is a misunderstanding and debate about the church’s original appearance. Very little survives of the church that is claimed to have inspired the Gothic style. The computer model below illustrates architectural fabric original to the 1100s in red and later additions in white. This should lead us to question: Why and how did historians assert this structure as the first on the basis of relatively limited physical evidence?

.

Abbey Church of Saint-Denis by Myles Zhang on Sketchfab

.

Strangely enough, despite the widely accepted fact that S-Denis’ architecture was significantly rebuilt, numerous scholarly and non-scholarly sources continue to assume this church to be the first. Copied below is a quote from S-Denis’ official website:

.

The birth of Gothic art. The church, designed by Abbot Suger, kings’ advisor from 1135 to 1144, was completed in the 13th century during the reign of Saint Louis. A major work of Gothic art, this church was the first to place a great importance on light, a symbol of divinity, in religious architecture.

.

Or this quote from medievalist Dieter Kimpel:

.

Suger, abbot of the most important of all the royal abbeys, that of Saint-Denis, and sponsor of the western part and the sanctuary of the abbey church, works considered rightly as a milestone in the history of the birth of Gothic architecture, left us a detailed account of his activity as abbot.

.

This misconception pervades scholarly and popular sources alike, including this church’s Wikipedia entry:

.

The building is of singular importance historically and architecturally as its choir, completed in 1144, shows the first use of all of the elements of Gothic architecture.

.

An appendix of selected sources claiming S-Denis to be the first accompany pages 46-48 of the written thesis.

.

Anyone is welcome to reuse, re-quote, or borrow the text, photos, animations, and drawings contained in this thesis for non-commercial purposes and with attribution to the author, in accordance with this creative commons license.

Evolution of the English Country House

 

.

.

This four minute animation traces the evolution of English country house design from the period 1660 to 1715, which was broadly defined by the arhcitectural style of the English Baroque. Roughly between 1660 (near the end of the English Civil War) and 1715 (with the beginning of the Georgian monarchy from Germany), English Architecture witnessed a profound shift in country house design from the compact and square-ish form of the fortified Elizabethan and late-medieval country house to the more open and less compact plan of the Baroque and later Palladian country house. This shift too in design followed a new embrace of the aesthetic relationship between country house and its surrounding, bucolic landscapes. The objective of this animation sequence is to visually illustrate these aesthetic and architectural changes. Click to watch the video above, or watch the slideshow automatically play below.

This animation sequence is part of the progression to my degree in Architectural History & Theory from Oxford and Columbia University.

.

.

Music: Franz Schubert_ Piano Trio in E Flat, Op. 100. Link to soundtrack.
Link to powerpoint presentation here.
Creative Commons permission is granted to download and circulate this video for non-commercial purposes, provided attribution is given to Myles Zhang.

.

.

.

The Legacy of Today

Rome left a legacy. What will we leave?

.

Roman Ruins

.

When one visits the ruins of vanished civilizations, such as Greece, Carthage, and Rome, one sees them not as whole structures, but as shards of memory and as the detritus of what once was. Their grandeur stems not from seeing them intact but from imagining them as they once were; grandeur lost is more moving than grandeur still extant. This architecture is powerful because of its ability to display dignity despite decay, not in spite of it. These ruins are by all means a legacy. But, will we too be fortunate enough to leave as indelible a mark for future generations?

To answer this question, it is critical to compare the principles of ancient architecture with the realities of modern culture. This divide is perhaps no better illustrated than by one book: De Architectura or The Ten Books on Architecture, written by Vitruvius, a Roman architect and engineer (also infamous for his nepotism). For hundreds of years, from the Renaissance to the Industrial Revolution, European architects were governed by this book, their user manual and “Bible.” His principles of design guided the likes of Palladio for his Venetian villas, Brunelleschi for his Florentine dome, and even da Vinci for his drawing of Vitruvian Man. Yet, despite centuries of tradition, modern architecture diverges from Vitruvius’ aesthetic standards. The globalized world of today with its glimmering skyscrapers, speeding trains, and growing reliance on the Frankenstein of technology bears little resemblance to the Rome of centuries ago. Rome and Vitruvius were steeped in tradition and precedent that modern architecture largely abandons, either rightfully or wrongfully so. But, so complete a break with the past is questionable without examining the past’s strengths and weaknesses. Thus, the question arises: What judgments about modern architecture can be drawn from examining Rome’s architecture?

.

.

In De Architectura, Vitruvius identifies the three principles of architecture: firmitasquality, utilitasutility and venustasbeauty. For Vitruvius, to attain all three and to pass the test of time is the ultimate signifier of great architecture. But, to fail in this endeavor, through shoddy construction or succumbing to time and the elements, guarantees that a building will be relegated to the dustbin of oblivion.

.

Venustas—Beauty

.

Unlike modern architecture, the architecture of Vitruvius’s time was governed by strict aesthetic principles. Above all, Vitruvius emphasizes that architecture must relate to the human body, “In the human body there is a kind of symmetrical harmony between forearm, foot, palm, finger, and other small parts; and so it is with perfect buildings” (Vitruvius 14). Vitruvius desires a continuum where well-proportioned and symmetrical humans inhabited equally well-proportioned structures. As the human body attains perfection through harmony, so must architecture. Consequently, the architect becomes less of a freelance designer and more of an interpreter, translating the proportions and elegance of the body into the forms of perfect buildings. As the human body has legs, torso, and head, architecture must have base, middle, and top. As the human body is symmetrical from left to right, architecture must be symmetrical from left to right. As the human body considers each organ in relation to the greater being, architecture must consider each detail in relation to the greater building. Vitruvius emphasizes continuity between man and his world, a place where man has an environment befitting his stature.

Yet, behind this devotion to replicating human forms in architecture, there are the seeds of racial prejudice. “In fact”, writes Vitruvius, “the races of Italy are the most perfectly constituted in both respects — in bodily form and in mental activity to correspond to their valour” (173). There seems to be the following implication: If perfect buildings replicate perfect humans, then humans are the perfect species, no further evolution required. Furthermore, since Roman people are the finest people in the world, Roman architecture must be the finest architecture in the world. To the modern world, the existence of the perfect species (or the perfect anything) is laughable given the basic biology mantra: There is no perfect genotype. (Nonetheless, we should forgive Vitruvius, assuming he never took high school Biology.) Vitruvius sees aesthetics as a linear evolution where Roman architecture and Roman culture are the specious pinnacles of progress.

Modern architecture, unlike Roman architecture, does not obey Vitruvian principles of construction and aesthetics. Building materials have changed; sheetrock, fiberglass, and plastic have supplanted stone, earth, and wood. Scale has also grown, the superhighway and skyscraper of today dwarf the Roman road and proud obelisk of yesterday. Unlike Vitruvius, the modern architect probably would not lay claim to racial or aesthetic divinity. The constraints of economy, in tandem with the desire for architectural variety, dictate that modern structures need not model the human form. Unlike Roman structures, which were almost always perfectly symmetrical, modern structures employ symmetry and ornamentation as mere “icing on the cake,” not as critical components in the architectural scheme. In other words, the Roman human to building harmony seems no longer to be a guiding principle.

.

.

On the one hand, the absence of aesthetic standards and the wide array of new building materials gives the architect greater autonomy. On the other hand, this same absence permits clutter and disorder. For instance, take Learning from Las Vegas, a 1972 essay by architect Robert Venturi comparing the plan of Rome to that of Las Vegas. Rome, a classical city created over millenia, is built of stone in general adherence to Vitruvius’ principles of perfection. Most Roman structures have a clearly defined base, middle, and top (usually the terracotta roof) and are of similar symmetry, height, style, and scale. Most structures also relate to their urban environment through their density and orientation. The scale is human; the city is a microcosm. On the contrary, Las Vegas, a modern city created virtually overnight, is fabricated of all materials with little planning or care for beauty. Consequently, the highway and city street feel hectic and visually crowded. The presence of a foe brick and stone casino clashes with the glass and metal of a next-door skyscraper. The Moroccan style theater clashes with the Federalist style motel, which clashes with the postmodern fairy tale castle. Las Vegas is not alone; rather, its chaos and clutter are merely exaggerations of Main Street and roadside America, which employ the principles of Las Vegas more discretely. Ancient architecture imbued order; modern architecture imbues confusion. Yes, anything goes when buildings may adopt any form or any style from any culture, regardless of Vitruvian principles. But, this variety comes at the cost of aesthetic disarray that would make Vitruvius aghast.

The question then arises: Might it be possible to continue practicing the aesthetic of Vitruvius in contemporary society? Probably not. To start, the scale of architecture and its role in society is different. Monolithic architecture was key to solidifying the legitimacy of Roman rulers and the breadth of Roman conquests. Architecture seemingly does not play a comparable role in 21st century society, where politicians quibble over funding for infrastructure and the arts. The profession of architect is also different. In Vitruvius’ time, the architect was also an engineer who oversaw even the smallest technical detail; for example, Vitruvius devotes much of his book to precisely describing engineering methods to be employed by architects. In our time, the architect is not always an engineer for the complexity of a modern building is far beyond the design abilities of any single person. Whereas Vitruvius’ time saw the concentration of talent and power in the hands of the master architect, our time sees the dispersal of talent and power in the hands of engineers, electricians, plumbers, lawyers, architects, and the rest. In this manner, the construction methods (and materials) underlying Roman architecture are inapplicable to contemporary society.

Society should shape its architecture according to its needs, not the reverse. Architecture, even if it is as refined as Rome’s, should not confine society to the trappings of history and style. As historian Kenneth Jackson writes: “History is for losers. [Preservation] is used as a political tool rather than a tool to preserve buildings.” We cannot and should not emulate Rome because Rome was what it was, and we are what we are. The identity of the past should not restrict the development of the future.

.

Met 4

.

Firmitas—Quality and Utilitas—Utility

.

Although Vitruvian aesthetics are potentially outdated, his principles of quality and utility are not. Quality and utility transcend culture and time and are just as applicable to our society as they were to Rome’s.

Vitruvius believes the architect is responsible for building enduring structures. He writes: “Stone, flint, rubble burnt or unburnt brick, — use them as you find them […] so that out of them a faultless wall may be built to last forever” (53). Vitruvius believes that any structure, no matter how humble, must be built to last. In this manner, there is continuity, from the humblest wall to the grandest temple; all are to endure the test of time. Furthermore, it is the architect’s duty to factor both beauty and time into construction, so that a wall will be just as beautiful in ten years as it will be in a hundred. This mindset reveals a fixed understanding of beauty; what is valued for beauty today will remain so tomorrow. A faultless wall will remain a faultless wall; a beautiful temple will remain a beautiful temple. A building is thus an investment in quality and taste.

Roman construction methods were based on precedence and tradition. In describing the responsibilities of an architect, Vitruvius writes: “An architect ought to be an educated man so as to leave a more lasting remembrance in his treatises” (6). An architect is responsible for creating a legacy through his proud buildings and lasting treatises, much like De Architectura did for Vitruvius. The treatise serves to maintain a continuum, whereby future architects can learn from their forefathers. The building serves to commemorate one’s era and its leaders for time immemorial. Thus, there is continuity where each generation of architects contributes to following generations, gradually refining architecture.

Although Vitruvius and modern architects seem to share little in common, they both agree that “form follows function” (a phrase ostensibly coined by Chicago architect Louis Sullivan). Vitruvius writes that each building must be constructed in a manner that reflects how it is to be used and where it is to be situated. He goes to immense lengths describing the building materials and methods best suited to each environment. This concern with function mirrors the founding principles of modern architecture. The fathers of modern architecture, like Vitruvius, believed that a noble architecture is the pure expression of function, verticality for the skyscraper, openness for the train shed, airiness for the cathedral, and efficiency for the factory. For them, each building should have an aesthetic form that parallels and expresses its function. Ironically, modern architecture has the same founding principle as ancient architecture. As postmodern architect Robert Venturi writes: “We look backward at history and tradition to go forward” (Venturi et al. 3).

.

St. John the Divine 5.

Cause for Concern?

.

Modern architecture radically differs from Vitruvian principles, in terms of both aesthetics and construction. Roman roads lasted millennia and Roman sewers are still in use; will our crumbling infrastructure last as long? Roman towers of stone withstood the elements for centuries; will our rusting skyscrapers of steel last as long? The Roman forum became legendary; could the same destiny await our “forums” of today, the strip mall, the grocery chain, and the drive-thru? The Renaissance aspired to the grandeur of Rome; what society will aspire to the “grandeur” of our society? Or, will there even be much to aspire to with the twisted piles of fallen metal and the troubled environment our children will inherit?

.

.

But, in the end, who am I to judge? The broken statues, pottery, and amphora proudly displayed in our museums were not made with us in mind nor would they be valued by their creators in the shattered state the public now sees them in. The sources of much of our knowledge about Rome stem not from official texts but from the vulgar graffiti scrawled on the walls of Pompeii and the tall tales of the Satyricon, Rome’s equivalent of modern pulp fiction. If anything, this unintentional legacy humanizes past civilizations better than the often pompous monuments leave behind. They reveal the lives of common people as they saw Rome. Rome left a legacy, although not always in the places and manner it intended to leave one. Perhaps we too may leave a legacy, although neither through our desire nor our intent. The detritus of modernity may (or may not) be valued centuries from now, if it survives. Twisted piles of rubble and plastic tupperware may (or may not) intrigue future archaeologists as they ask: How did this once prosperous and powerful civilization meet its end? History has a strange habit of reviving old skeletons and turning trash into treasure. Commemoration or oblivion, a future fountain of inspiration or a lasting cause of sorrow, what will become of our globalized world? Only time will tell.

 .

St. John the Divine 1

.

Works Cited:

Venturi, Robert et al. Learning from Las Vegas. 1st ed. Cambridge: MIT Press, 1972. Print.

Vitruvius, Marcus. The Ten Books on Architecture. 1st ed. Cambridge: Harvard University Press, 1914. Print.